A Macroscopic Plasma Lagrangian
and its Application to Wave
Interactions and Resonances

by
Yueng-Kay Martin Peng

June 1974

SUIPR Report No. 575

' National Aeronautics and Space Administration
Grant NGL 05-020-176

i

- " National Science Foundation

Grant GK-32788X

{(NASA-CR-138689) A MACROSCOPIC PLASHA N74=-27231

LAGRANGIAYW AKD ITS APPLICATION TO WAVE o

INTERACTICHSE AND RESONANCES (Stanford

Univ,) 262 p HC §$16.25 CSCL 201 : Unclas
G3/25 41288

INSTITUTE FOR PLASMA RESEARCH
STANFORD UNIVERSITY, STANFORD, CALIFORNIA




A MACROSCOPIC PLASMA LAGRANGIAN AND ITS APPLICATION TO WAVE
’ INTERACTIONS AND RESONANCES

by

Yueng-Kay Martin Peng

National Aeronautics and Space Administration
Grant NGL 05-020-176 :

National Science Foundation
_Grant GK-32788X

SUIPR Report No. 575

June 1974

Institute for Plasma Research
Stanford University
Stanford, California

i



A MACROSCOPIC PLASMA LAGRANGIAN AND ITS APPLICATION TOQ WAVE
INTERACTIONS AND RESONANCES

by
Yueng-Kay Martin Peng
Institute for Plasma Research

Stanford University
Stanford, California 94305

ABSTRACT

This thesis is concerned with derivation of a macroscopic plasma
lagrangian, and its application to the description of nonlinear three-
wave interaction in a homageneous plasma and linear resdnance oscilla-
tions in a inhomogeneous plasma,

Ong,apprgach”to obfainftheuLagrangian'is via the "invérse problem
of the calculus of variations for arbitrary first and second order
quasilinear partial differential systems, Necessary and sufficient
conditions for the given equations to be Euler-Lagrange equations of a
Lagrangian are obtained, These conditions are then used to determine
the transformations that convert some classes of non~-Euler-Lagrange
equations to Fuler-Lagrange equation form. The Lagrangians for a linear
resistive transmission line and a linear warm collisional plasma are
derived as examples.

Using energy considerations, the correct macroscopic plasma
Lagrangian is shown to differ from the velocity—integrafed Low Lagrangian,
by a macroscopic potential energy that equals twice the particle thermal
kinetic energy plus the emergy lost by heat conduction. The generalized
variables are the macroscopic plasma cell position [Eulerian éoordinates)

defined in Lagrangian coordinates, and the vector and scalar potentials



defined in Eulerian coordinates. With the continuity and heat flow
equations treated as constraints, the Euler-Lagrange equations are shown
to be the force law and Maxwell's equations. The effects of viscosity,
heat conduction, and elastic collisions are included in this variational
principle., The corresponding macroscopic Hamiltonian, and the micro-
scopic Hamiltonian corresponding to the Low Lagrangian, are also derived.

Under the assumptions of scalar pressure and adiabatic processes,
the macroscopic Lagrangian is approximated by expansions in weak pertur-
bations of the generalized variables. The averaged Lagrangian method
is then used to derive nonlinear three-wave coupling coefficients in a
wa;ﬁ homogeneous two-component plasma. The effects of wave damping
are included phenomenclogically in the coupled mode equations. The
general resuits are then specialized to make detailed quantitative
comparisons between theory and available experimental results on parame-
trically excited ion-zcoustic waves,

The approximate guadratic Lagrangian is also used to estimate the
electrostatic (Tbnks—Dattner) resonance properties of an inhomogeneous
plasma, The Rayleigh-Ritz procedure is applied directly to the Lagrangian
corresponding to a system of Euler-lagrange equations, Use of an appro-
priate set of trial functions then leads to frequency and eigenfunction
estimates in excellent agreement with the existing theoretical and experi-
mental results for a low pressure positive column, Since this method
mainly involves evaluating finite integrals, and solving algebraic eigen-
value equations, it is found to be more efficient than numerically =olving

differential equations, and more accurate than inner-outer expansions,
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1. INTRODUCTION

In theoretical descriptions of plasmas, three approximate models
are commonly employed. These are the cold, ,the microscoplc, and the
macroscopic plasma models, all of which use Maxwell's equations. To
conplete the system of equations, the cold plasma model uses Newton's

force law,

dy
m—a-f=q(£+xxg) ’

(1.1)

where E and B are the electric and magnetic fields, and Y, m, and

q are the particle velocity, mass, and charge of a Sbecies. The
plasma is then regarded as consisting of-interpénetrating cold fluids
with éharge and current densities, 2 gn and I gny, respectively,  where X
sums over all particlé species, and n is the particle number density.

The microscopic plasma model uses Newton's force law in (1.1) for each

particle, and the Boltzmann-vVliasov equation (Clemmow and Dougherty, 196G)

ot X .y 0
.V = f = .
a‘t'+ AR - - s (1.2}

where f(zhg,t) is the Boltzmann distribution function for each particle
species. The expressions for charge and current densities now become

z qJEQX and qj}Xﬂf? respectively, The plasma is regarded as a system
of charged particles evol&ing under the influence of their own electro-
magnetic fields, and externally applied fields (if any). In principle,
complete solutions to the particle force 1aw-for all particies will auto-

matically generate the solution of f(x,V,t) because (1.2) is a statement



of particie conservation along the particle trajectories in a.six—
dimensional phase space {X,v). When it is not necessary to obtain the
particle trajectories, solutions of £(x,v,t) are obtained by use of
(1.2) together with Maxwell's equations,

The macroscopic plasma model uses velocity moments of the Boltzmann-
Vliasov equation (1,2)_ Examples of these equations are expressed by
(3.29) and (3.46), The charge and current densities are now written as
Zgn and I anvy, where p is the drift velocity, i.e, the averaged
local velocity of a particle species [see {3.13)]. Here, the plasma is
approximated in terms of localized variables such as density, drift
velocity, pressure, and heat flux, In terms of degree of approximation,
the macroscopic model falls bhetween the other two models,

The appropriate Lagrangians for the cold plasma model (Galloway and
Crawford, 1970) and the microscopic plasma model {Low, 1958) are already
well-~known. However, the Lagrangian for the macroscopic plasma model,
that corresponds to Maxwell's equations and the moments of the Boltzmann-—
Vlasov equation, has not been established. The gap will be filled in
this thesis,

The interests in developing this variational principle stem f?om
the fact that current theoretical investigations in nonlinear wave-wave
and wave-particle interaction properties of homogeneous plasmas, and in
linear properties of inhomogeneous plasmas, are at the limit of analytic
tractability. While a suitable variational principle does not provide
new fundamental laws, it leads to a relatively concise formulation and
easy manipulation for these otherwise difficult problems.

To obtain the suitable macroscopic Lagrangian, the first problem that

arises is the inverse problem of the calculus of variations, i.e, the



derivation of Lagrangians from arbitrary equations. This mathematical
approach will be examined in Section 2 in contrast to the appro;ch via
energy considerations commonly used for physical prohlems; From this
general point of view, it will be shown that energy dissipation effects'
can be included in variational (minimal) principles,in general, and the
results will be demonstrated with examples,

The approach of the inverse pyoblem treats all dependent variahles
as generalized variables. The plasma variational principle to be presented
in Section 3 will treat only the macroscopic plasma cell position and the
electromagnetic potentials as generalized variables, This type of formula-
tion for a gystem of discrete charged particles, was described in a
relativistically covariant form by Landau and Lifschitz (1965), and
in the non-relativistic form by Goldstein (1950). Extensions of these
Lagrangian densities to the microscopic plasma model, to include a velocity—
distributed system of particles,. have been proposed by Sturrock (1958a)
and Low (1958). Based on Low's Lagrangian, and using energy considerations,
we shall obtain the corresbonding Lagrangian and Hamiltonian for the
macroscopic plasma model, with the effects of viscosity, heat conduction,
and elastic collisions taken into account.

in applications of Lagrangians to problems involving homogeneous
plasmas, there has been progress in the areas of linear waves (Kim, 1972),
nonlinear three-wave interactions (Galloway and Crawford, 1970), wave-
background interactions (Dewar, 1970); wave kinetic equations (Suramlishvili,
1964 and 1965; Galloway, 1972), higher order nonlinear wéve processes
(Dewar, 1972; Dysthe, 1974), and statistical analysis of plasma turbulence

(Kim and Wilkelm, 1972). For problems in inhomogeneous plasmas, results



have been presented in the area of energy principles {Newcomb, 1962), and
in the use of the Rayleigh-Ritz procedure to obtain approximate solutions
{Dorman, 1969}. As compared with other branches of physics, these cases
comprise a disproportionately small fraction of the theoretical effort
in plasma physics,

In this work, the new macroscopic Lagrangian will be used in two
ways. In Section L we shall be concerned with the general description
of nonlinear three-wave interactions in a homogeneous plasma by use of
the averaged Lagrangian technigue {Whitham, 1965). These results will
be specialized in Section % to parametric amplification of ion-acoustic
waves to make quantitative comparisons with available experimental data,
The second application of the Lagrangian will be presented in Appendix B,
where the Rayleigh-Ritz procedure is applied to obtain approximate solu-
tions for electrostatic resonances in a low pressure positive column, It
will be shown that the results compare favorably with available experimen-—
tal data and conventional numerical calculations by others (Parker, Nickel,

and Gould, 1964),

Some conclusions are drawn in Section 6, where new contributions and

future extensions of this research are briefly discussed.



2. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS

2.1 Introduction

In the calculus of variations Hamilton's principle is applied to
the integral of a given Lagrangian density, often referred to. as the
action integral, to obtain the Euler-Lagrange equations extremizing the
action integral (see for example, Courant and Hilbert, 1966). The
inverse problem of the calculus of variations is to find the conditions
that arbitrary differential equations must satisfy to be the Euler-'
Lagrange equations of a certain Lagrangian density, and to determine
an'appropriate Lagrangian density from the given differential equations,
The term 'Lagrangian density' as used here will include cases with
multiple independent variables, Recent developments of a method of

- studying weakly nonlinear wave propagation in distributed systems makes
' the inverse problem for a systm of partial differential equations of
particular interest (Whitham, 196%; Galloway and Crawfqrd, 1570; see
Chapter h). A general appreoach is required to obtain appropriate Lagran-
gian densities for systems of equations including effects of energy loss
due to heat flow, viscosity, and collisions,

The inverse problem of the caiculus of variations attracted
attention over a century ago, when Jacobi (1837} examined the character-
istic properties of an ordinary Euler-Lagrange differential equation of
second order (Kiirschdk, 1905; Akhiezer, 1962), More involved problems
have since been studied. Such work includes that by LaPaz {1930), who
treated the case of one dependent variable in many independent variables
using the necessary property of self-adjointness of the Euler-Lagrange

equation, Douglas (19L41) has studied the case of many dependent variables

\J1



in one independent variable, by considering the characteristic forms of
the coefficients in a system of Euler-Lagrange equations., Van der Vaart
{1969) has applied the results of Douglas (1941) to a system of ordinary
linear differential eguations of second order, A survey of the litera-
ture on this approach to the inverse problem may be found in the book
by Funk (1970).

The general case of many dependent and independent variables has
been considered by Vainberg (1964). By treating the dependent variables
as points in a coordinate system of functions, the invariance of an action
integral under the variation of the functions is shown to he analogous
to the invariance of a potential under the variation of the path of inte-
gration (Tonti, l969a). This analogy has led to definition of poten-
tiality conditions for the operators of the system of equations, TFor
differential equations, those potentiality conditions are then the necessary
and sufficient conditions for sclutions of the inverse problem of the
calculus of variations (Tonti, 1969b).

The treatment to be presented in Sections 2.2 and 2.3 will be con-
Tined to quasilinear differential systems of first and second order,
respectively. We shall emphasize special forxrms of the Euler-Lagrange
differential system, following the approach used by Douglas (1941), while
generalizing to the case of partial differential equations. Since we
are looking for some scheme that generates a Lagrangian density, the
conditions for the given equations to be Euler-Lagrange equati;ns will
be established in such a way that, once satisfied by the differential
equations, an explicit Lagrangian will.be derivable, The cases of linear
and weakly nonlinear differential equations are treated as examples in

Sections 2.2.3 and 2.3.3, respectively.



In supplement to these conditions, the nonuniqueness in the form of
the given differential system requires discussion: there are operations,
such as multiplication of the system by some matrix expressions (Davis, 1929},
and changes of the dependent variables, that can convert apparently non-
Euler-Lagrange equations to equivalent Euler—pagrange equations, In
Section 2.4, we shall discuss one of these techniques, differential
transformation of the dependent variables. As examples, we derive
appropriate Lagrangian densities for a resistive transmission line, and

for a warm collisional plasma in Sections 2.4%,2 and 2.4,3, respectively.

2.2 First Order Differential Equations

A system of first order quasilinear differential equations has the

general form,
(o . '
PP+ 0¥-0 (i1, L, N B =1, ..., W), (2.1)

where the coefficients C?B and Da are explicit expressions in indepen-
dent variables X, and dependent variables UB, and U? is written for
the derivative 3U’/x,. Repeated indices of i (or j,k, ... etc.) are
summed over the N independent variables; repeated indices of o (or
By Yy --- etc.} are summed over the M dependent‘variables. We see that,
; ap 4 2
in general, the numbers of the Ci and D7 are MN and M,
respectively,

The inverse problem of the calculus of variations aims at deriving

. . o4 a .

a Lagrangian density, £ [= L(Ui, LI xi)], that gives (2.1) as the set

of Euler-Lagrange equations obtained by extremizing the action integral,

I zdex v, v, x) (2.2)



through variations of the dependent variables, %, For an arbitrary

I (U?, Ua, xi), the Euler-Lagrange equations take the form,
d { .
g (3{1)“ aﬁx =0 : (i=1, ..., N, =1, ..., M) , (2.3)
i an atl

where d/dxi operates on both the explicit and the implicit X, =
dependences through U?(Xﬁ) and Ua(xi).

Equation (2.3} is a highly specialized fomm of (2.1): the coefficients
~OB

L,
1

nd

. ‘e PR O O A 4
and D are functions only of ihe derivatives of ¢ (U

\
. U X, ).
1? 2 l)

The necessary conditions for (2,1) to be a set of Euler-Lagrange equations

W11l be obtained in Section 2.2.1 by elimination of g (uJ, u%, x,) from

the expressions for C?B and Da. More important, however, are the suffi-

cient conditions on C?B and D% so that a corresponding g (U?, Ua, xi)
exists, In Section 2.2.2, we shall establish conditions which will enable

us to solve the expressions of C?B and D% for ¢ {U?, v, xi).

2.2.1 DNecessary Conditions

In view of (2.3), £ must be linear in the U? to give a set of

Euler-Lagrange equations of the form (2.1). We write
g=mofen (2.4)

where Tﬂ? [=3ﬂ?(UB,xj)] and J [= n(Ua,xi}] are functions of UY and
xi. The Euler-Lagrange equations of this Lagrangian density with respect
o)
to U then become
ant’  anf ant?

i A R (2:3)



Comparing (2.1) and (2.5) gives,

o B
am am am
__.._i - __—_:;:_ 3 D = — - ——an . " (2.6)

B | 2
siP v i av

i
ap Cl , . .
The Ci and D~ must satisfy the following equations, obtained by
eliminating the 3nf and N from (2.6),
OB BY Yo
aci aCi aCi

, =0 . (2.7)
auY i au® ' auP °- (&0

B
7 % AP

% 3P B 3t

4 P g
1 1

2.2.2 Sufficient Conditions

Given C?B(Uy,xj) and Da(UB,xi), we require conditions sufficient
to guarantee that (2.6) can be solved for the ?ﬂ? and T in terms of
the UIB and X, . Note that the uniqueness of solutions is not required.

The first equation of (2.6) represents at most MEN equations for
the MN unknowns 7“?, with UB -as independent variables. For ?ﬂ? to

L . . ap B

exist, (2.7) must be satisfied. In particular, c;” = -C;, so that

the number of distinct equations covered by the first equation of (2.6)

is reduced to MN(M-1)/2. These can be divided into N independent

groups of M{M-1)/2 equations for each i, Consider in each of these
. : o P Y

groups the subset of equations relating ?ﬂi, ]ﬂi, and W&. If we

assume a form for Tn?, we may then use the first expression in (2.6),

which yields

(> o )
My | am _ - o (2.8)
- : = o, :
w* o T w® vy



to solve for Tn? and an, subject to the constraint that the particular

solutions: of Tﬂ? and Jﬂ: must satisfy

5 ¥
CEW = ?T}E ‘“a& - (2.9}
SR AR s

This self-consistency condition requires that C?B, CEY, and C}a satisfy
the final relation of (2.7).

As a digression, it is of interest to note that this self-consistency
condition is analogous to the well-known condition that magnetic fields
are source-free. For the magnetic field, B, and the corresponding

vector potential, A, we have

~—

V.B =0 s B=VXA . (2.10)

The analogy follows by taking o= 1, B = 2y, Y = 3, and

B - c?lc?ﬂcig ,oa=mbmdmd ool 303 X
~ i i ~ |1 i if aU1 U aU3
(2.11)

The foregoing argument is valid for any triplet from the set {a}.
Therefore, with Jn? arbitrarily chosen, and the final expression of {2.7)
satisfied, we can always use the first relation of {2.6) to solve for
7“?,3“:, etc, Having obtained this set of particular solutions, they can
be substituted in the second expression of (2.65), together with the

. &4 . ; ;
given D7, to obtain M equations for the single unknown function ﬂ{Uu).

A solution for ¥ exists if we have

3 fan) _a fan
o) - S o



Use of (2,6) indicates that this condition implies that the ¥ must be
related according to (2.7). .
. . ; ap By
The consistency relation of (2.7) for triplets such as Ci 3 Ci s
Cza reduces the number of independent equations in (2,6) from M{M-1)/2

to (M-1) for each i, This follows since use of the equations,

1 2 1 3
12 My Iy 13 Iy IY ,
¢, =—5~— ;=3 -1 > (2.13)
18] ou oU ou
in the final expression of (2.7) will result in
2 3
- am
cf3 - __% - __% + A(Ue,udy (2.14)
U al
: : UE--S . . . : 2 3
where A( ,U ) is the constant of integratiomn, Since Tni and Tni

also contain arbitrary functions of U2 and U3, because of (2.13),

it is always possible to adjust them to make 5(U2,U3) = 0, Symbolically;

we can express the result that (2,14) follows from (2.13) as

12, 13— 23,

12, 13, 1k ~ 23, 24, 34,

12, 13, 1h, IM ~ 23, 24, ..., (M-1)M .

Thus, by imposition of the third condition of (2.7), the first expres-

sion of (2.6) is reduced to only M-1 independent equations for each 1.
. 1 _ .

By choosing ?ni arbitrarily, ?ﬂ? (B > 1) can then be obtained consis-

tently by use of (2.6).
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It is now clear that the relations expressed by {2.7) are the necessary
and sufficient conditions for (2.1) to be a set of Euler-Lagrange equations
of a Lagrangian density of the form given in (2.4). When expressions
for Cgﬁ and Da satisfying these conditions are given, the procedure
for deriving the corresponding Lagrangian density will involve only
direct integrations. It should be noted that since ?ﬂi is arbitrary,
the set of Tﬂ? and the function T are not unique. In addition to the
freedom in choosing ?ﬂ?, the set of Tn? and the function N are deter-

mined only to within arbitrary functions of the x_,

_*

2.2.3 Linear Differential Equations

As an exercise, we shall derive a Lagrangian density for a system

of first order linear differential equations for which

C?E = cgﬁ(xi) , p” - daﬁ(xi)UB + ea(xi) . (2.15)

The sufficient conditions of (2.,7) then reduce to

a _ acgﬁ o
P - <P , = a® - P (2.16)
1

where the final relation of (2.7) has dropped out. We shall choose 3ﬂ?

to be the form, M?BUB, where, by (2.6), the M?B are related according

to
PRI R - {2.17)
i i i

For convenience, we shall impose the condition Mgﬁ = ~M?u,

With the assumed form of 3nf, we obtain by use of (2.6)

P
on LB P (2.18)
o) axi

12



Accordingly, N assumes the form,

3%

n= PP - Nk on(x) P -2 - d“ﬁ)= ¥, (2.19)

i

Combining these results into (2.4) gives the Lagrangian density

. op
e
1 op B 1 i oﬁUOLUB_aUa
I = —2- Ci U?U + 'H BXi - 2d e 4 1'1A ) (2.20}

where n is an arbitrary function of the X, .

2.3 BSecond Order Differential Equations

A system of second order quasilinear differential equations can
always be transformed into a first order differential system by treating
the derivatives of the dependent variables as new dependent variables
{Courant and Hilbert, 1966). However, this approach to the inverse
problem is unsatisfactory for plasma problems becausé the introduction
of new dependent variables is equivalent to introducing artificial
degrees of freedom. Also, if we leave the number of degrees of
freedom unchanged, the Lagrangian density for second order differential
equations describing physical systems generally has a corresponding
Hamiltonian density, ¥ ., Conditions sufficient for the existence of a
Lagrangian density, f, will then also guarantée the existence of |
and allow it to be used in such applications as evaluating nonlinear wave
coupling coefficients (Sturrock, 1960a; Harker, 1970).

For purposes of example, the system of guasilinear second order

differential equations will be assumed to have the form

13



where UOﬂ is the set of dependent variables; the coefficients A?ﬁ and

BY are functions of Ug, Ua, and ;5 and U? and U?S denote the

first and second derivatives of Ua, respectively. Since U?} = U?i’
the matrix AS& can be assumed symmetric in the indices i and j

without loss of generality.

2.3.1 Necessary Conditions

Equation (2.3) may be written

2 2 2
3 1 Ua+a.£ U5+ay 3L

A .-, 2 - =0 . (2.22)
au‘fau? i au‘;‘uES 1 aulex,  au”

Comparing with (2.21) gives the necessary conditions for that system to

be the set of Euler-Lagrange equations of § as

2 2 2 =
e - - R It Y- 3%

iJ T L OB B’ e ] T
o au’ auj%ui i auiax,  au

. (2.23)

Eliminating £ allows us to express these conditions in the form

ap op By Yo
JA; BAJ.k ) aAki aAki

ij +

N Yo ’
auy  au) ol avﬁ

O B

op Ry 3B JB (a Y 3 ) ap
PN , CLIFI. ] MY [N - T e

ij ij au? aU(iz X, Iy ij ’

3% apPY o 2

[(a +U5_a_)a _a]AqY+ ij 1;1:}_(535 +BBB)_ (2.24)

3% Kb an auPd T Y @ ° aUO‘aU?; aUO‘aUI
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2.3.2 8ufficient Conditions

We can assume the general form of the Lagrangian density as
o a )
£ = g0, x ) + 3P x )l + v x) (2.25)

where g is responsible for A??. Then it follows from the first rela-
tion of (2.23) that
) 2
LU % ke
an, J J¥5

(2.26)

where only the set {U?} are treated as independent variables. By

interchanging ¢ and B, we see that this differential equation can

be solved only when Aiﬁ = A??, which is the second relation of (2.24),
Equation (2.26) constitutes MN(M+1)(N+1)/4 1linear differential

equations to be solved for ¢, For g to exist, consistency among the

third order partial derivatives is required, i.e,

s (7 \_3 (3,29 N (2.27)
u \afar’)  a® \auau)

This implies that the first condition of (2.24) must be satisfied,

In the cases where either & =8 or i = j, g can be obtained
by simple integration of {2.26). When both o # B and i # j, (2.26)
becomes an ultrahyperbolic differential equation with constant coeffi-
cients (Koshlyakov, Smirnov, and Gliner, 1964), Its particular solutions
can be obtained by Fourier transforms (Koshlyakov, Smirnov, and Gliner,
(1964). The general solution of 4 should include that of the homo-

geneous equation,

15



2y, 3
B o
au?auj anavf

= 0 , (2.28)

which can be splved by separation of variables (see Appendix A)_ We shall
show below that this nonuniqueness in g will be restricted by other
sufficient conditions.

From the second expression of (2.23) and (2.25), we obtain,

o4 B 7
o a7 2
(——:7--—} U‘-B+:—:“-——*-Uﬁag -2 +2,g (2.29)
\avP a1 g ou P aufaxi U™

Since (2.29) is an identity in U?, Ua, and X5 the right-hand side

must be linear in U?. Taking the derivative with respect to U?, yields

07 B
¥ ¥ (a LY 2 ) RN R < (2.30)
ar w® \¥y au?auf aUaan aU‘faUIB 3U§

the left-hand side of which is antisymmetric in ¢ and pB. The third
expression in (2.24) guarantees that the right-hand side is also anti-
symmetric in ¢ and B. However, the fourth expression, which shows that
(2.31) is symmetric in i and Jj, is not sufficient to establish that
the right-hand side of (2,30) is independent of U?. This requirement

can be obtained by differentiating (2.30) with respect to U},

2
[(é—'”ﬁaga )a -2 ]agl +33? +339 =E‘EBB . {2.31)
oy 3u8 aui auP au?au} aUVaﬁ?aU? au“aufau} aufav}

This is more restrictive than the third necessary condition, and represents

limitations on 2 in addition to the fourth.

16



Additional conditions from {2,30) for ?? to exist are

a® Y Ry
i + i + i

-0 (2.32)
Y a® P
analogous to the last expression of (2.8), where ﬂ?ﬁ is defined by
e _ 28" _f(a ,.v3 \&2
ﬁi = --;S' - (-ax— + Uj "'—'.?) ap ) (2'33)
ol AT au BUjan

The solution of {2,30) enjoys one arbitrary choice of ??, just as the
solutions of the first expression of (2.6) for jﬂ?, for each i. But

if (2.29) is to give a consistent solution for (Q, additional conditions
restricting the set of ?? then follow from (2.29), from the requirement

that

) e

analogous to (2.12). We have

o B
(g_+ yY 2 )(azgz _ ¥ )+ a* _ P _ (a L oY 3 )(Wi i a-‘i’i) _
ox; 1 oyY an‘anf aUBaUCi" P @ \¥ Y\ ™

(2.35)

In summary, sufficient conditions for (2.21) to represent a set of
Euler-Lagrange equations of a Lagrangian density, U, fo the form (2,25)
are as follows: for a solution of (2,26) for § to exist, A?? must
satisfy the first two conditions of (2.24); for a solution of (2.30) for
¢ to exist, ¢ must be further restricted by (2.31) and (2.32), while

A?ﬁ and B” must satisfy the third condition of (2.2L); for a solution

17



of (2.29) for Q to exist, ??, g, and B* must be restricted by (2.35).
These conditions,as well as those of Section 2.2.2 for first order equa-
tions, agree with the general forms obtained by Tonti (1969b) by poten-
tiality analysis of differential operators in function space (Vainberg,

1964; Tonti, 1960a).

2.3.3 Nonlinear Differential Equations of the Second Rank

As a demonstration of the foregoing results, sufficient conditions,
and the corresponding Lagrangian density, will be obtained for the

differential system

Aaﬁ = a%B 4 OBY Y + a0y U’
ij ij ij ijk "k

8% = b% + bR + pBYNPEY & PP L BBy & P YBYY | (2.36)
ii i i ij "i7J

The coefficients, agﬁ, etc. and ba, etc,, are functions of X5 the

a?? are symmetric in i and j, the baﬁy in B and vy, and the
b??Y in (B,i) and (Y,j). With the coefficients of (2,36), the equa-

tions of (2.21) are nonlinear and of the second rank because of the

presence of a?@*, a?ﬁy, bQBY, bgBY and bgﬁY
ij ijk 1 ij

Substituting (2.36) into (2.24) yields for the a?ﬁ, etc,,

2P - WP OBY  Pay o8y pay
ij ij ij ij ijk ijk
By opY _ By Yop
%35k T %5ki T ki " Pkiy 2 (2.37)
(94

and for the b~, ete,,
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22 . 22SEY
of =191 opY QY _ A 13
bi + b = E(BX ) 3 bi + bi = E(axj ) 3
5a0BY ,
p2BY bﬁ“‘f - 2By Lk (2.38)
ij ij axk

We can now assume the general form for 7 as

7 - S+ 28+ PP (2.30)

and choose to impose

By pay YR
Pk = Dix = Py - (2.50)

The requirement of (2,31) reduces to

L %(ab“.“?ﬁ © 2By _ aE‘Ya) , | (2.01)

(ﬂﬁ'f £1%+ 2)%F) . (2.42)

Using (2.30) we find that 7 takes the form

9? = piOBUB + pgﬁYUﬁUy s (2.43)

where p?ﬁ and pgﬂy are to be obtained from the differential relations,

aafﬁf’ 1 2as" "
psP - pfa = b(i}B - E;i ; P - b - E(b?ﬁ\f axl‘] ) (2.44)
J J
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The conditions of (2.35) reduce to

aaoﬁ Y 1 oBY aagﬁy
op pa 3 {08 _ "~ id opY _ . paY _la - d 5
LR X, (bi ax, |? b b T2 9% by B ;o {2.45)
i J J
without further restricting the choices of p?ﬁ and p?BY.
The general form of Q is
a = -b® + ¢PuP + (PP 4 q(xi) ) (2.46)
where, according to (2.29),
o8 _ _ Lfop ap‘;@) pa oy 1femv L\ o "
= o = - = = - =|b - = .
q 5 (b >, q » 4 3 =, a” , (2.47)

and q(xi) is arbitrary.

We find that the ﬂgﬁl are determined from (2.41) only to within an

arbitrary curl tensor, e Bd?ﬁy/ax , where ¢ is the antisymmetric
ijn” “m

kmn kmn

unit temsor., According to {244} the p?ﬁ and pgﬁy are both deter-
mined only to within an arbitrary tensor symmetric in ¢ and B,

In the special case that the set of differential equations expressed

by (2.21) are linear, the relevant sufficient conditions reduce to

aa(?@ aa(?‘f?
2% - WP b + pPY 2(—-5—') , b8 P é—(1:.943 - 13) .
ij ij i i ax. ox, 1 1 OX .
J i J
(2.48)

These are equivalent to those used by van der Vaart (1967), who con~

sidered the case N = 1 [Equation {16) by van der Vaart (1967)].
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2.4 Dpifferential Transformations

In Sections 2.2 and 2.3, we assumed that the ¢ith equation of the
differential systems represented by {2.1) and (2.21) is an Euler-Lagrange
equation with respect to variation of Ua. Now these sets of equations
are transformable, for example by change of variables, to equivalent
sets which no longer satisfy the sufficiency conditions., Solution of
‘the inverse problem of the calculus of variations is consequently less
restrictive than is suggested by the sufficiency conditions: it may be
possible tq convert seemingly non-Euler-lLagrange equations to Euler-
Lagrange equation form by use of appropriate transformations, The
problem this poses is how to recognize when such transformation is
possible, Here we shall comment briefly on the transformations likely
to be involved. We cannot provide_a gepe?al solution,

Among the range of possible transformations, those retaining the
number of dependent_variables unchanged include; (a)'matrix transformation
of the dependent variables; (b} matrix transformation of the differential
equations, by use of integration factors, leaving the dependent variables
unchanged (Davis, 1929); and (c) differential transformation that raises
the order of the differential equations, For a self-consistent system
of M .differential equations, Method (a) involves M2 functions of xi
as the elements of the transformation matrix; Method (b) involves M2
functions of x, as matrix elements, the dependent variables, and
perhaps their first derivatives, while Method (¢} involves only M
functions of LI the new dependent variables, and their derivatives,
In each of_these cages, the number of functions at our disposal in

general falls short of the number of sufficient conditions to be applied.
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Consequently, we cannot expect that these methods will always be success-
ful in transferming non-Euler-Lagrange equations to Euler-Lagrange equations.
Despite their inability to guarantee successful transformation,
methods (a)-(c) are of interest in dealing with equations of forms, such
as those occurring in some physical and engineering problems, where the
number of sufficient conditions 1s reduced. Well-known examples can be
readily found in the cases of replacing electromagnetic field variables
by potential variables (Goldstein, 1950), and velocity variables by
Clebsch variables (Lamb, 1930), before the Lagrangian densities can be
obtained, To illustrate their use here, we shall apply a linear differen-
tial transformation to convert a first order linear non-Euler-Lagrange
system to a second order Fuler-Lagrange system in Section 2.4.1, Using
the sufficiency conditions obtained in Section 2,3.3, we shall then
determine the maximum number of dependent and independent variables for
a successful transformation to be possible, As examples, a resistive
transmission line, and a warm collisional plasma, will be studied in

Sections 2.4.2 and 2.4,3, respectively,

2.4.1 Differential Transformation of Linear Differential Equations

Under the linear transformation,

v = 1P W+ 8P WP By (2.49)

the first order linear differential equations of (2.,1) and {2.15)}
become second order equations, with coefficients of the form {2,36)

given by
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3T P
a.r = 3‘-( T“{IB + co“’Y YB) , bO:ﬁ = cd\{(-—-]—'-) d” \,@ + c SYB )
ij 2 J J i J i

i axj

i} ax.

1

vB p
8 c(f\((—g-x-s——-—)f aX¥gYP s b = coﬁ(-a-R— PP+ & (2.50)

The sufficiency conditions imposed on these coefficients by (2.48)
constitute MN{M-1)(N+1)/b+ MN(M+1)/2+ M(zﬁ—l)/2 conditions to be
safisfied‘by the M2(N+lj unknown functions, sz and 5P, The
numbér of unknowns will consequently be no less tﬁan that of the

gonditions only when
MM-1D) (1) (N-2) = bm (2.51)

When (2,51) is satisfied, the equations obtained by substituting

(2.50) into (2.48) are in general solvable for the f?ﬁ, sHP

ap  op

for the given coefficients C; s d

($
» and B,
04
» and e , The resulting second
order differential equations will automatically become Euler-Lagrange
equations, with the corresponding Lagrangian density derivable using

the results of Section 2.3.3,

2.4.2 Resistive Transmission Line

The first order equations for a linear resistive transmission line,

as shown in figure 2.1, take the form,

ol av al av
ax+c3tﬂc> » Lt TR=0 , {2.52)
where I, V, C, L, and R denote the normalized current, voltage,

distributed capacitance, inductance, and resistance, respectively.

According to (2.16), (2.52) is not in Euler-Lagrange eguation form,
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Figure 2.1 Resistive Transmission Line
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with {I,v} = {Ul,UE} and {f,g} = {Vl,vg}, the procedure outlined in

Section 2.4.,1 may be followed to give

e ' 8 8 _
I c T— + C P 3 + LC 3t RC T A
l ’ (2.53)
9 o) g 9 _

as an appropriate transformation. The corresponding Lagrangian density
is obtained, through the use of (2.25), (2.39), (2.43), (2.44), (2.46),

and (2.48), in the form, :

ax X ax\at at
+ L 2 (¢ LA Lc C'QE - + 2 §£'§§ + L o8 2“
Jx at 17 2 3 at at ot
RC | {3f , 2E) _ of3e , 28} [ _ L g2.2
oy g(,é; * at) f(ax + at)] 2 (2.54)

The Euler-Lagrange equations of (2.54) can be shown to agree with the
result of using (2.53) in (2.52). Because the number of sufficient con-
ditions is less than the number of transformation coefficients, T?ﬁ

and SOB, (2.54) is but one example among an unlimited number of appro-

3
priate Lagrangian densities,

2,&,3 Warm Collisional Plasma

For small one-dimensional perturbations in a plasma with a homogeneous
immobile neutralizing positive ion background, the macroscopic equations

can be written as,
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3E , en By, & n _
§+%=O s at+n03x—o R mat+mw+\’PO(aan+eE._O,

where m and e are the electron mass and charge; n, and PO are the

gquiescent electron density and pressure; vy is the effective electron-
ion and electron-neutral momentum transfer collision frequency; Y is the

adiabatic index, and ¢ is the permittivity of free space, The pressure

Q
term, YPO-gg no, results from assuming an adiabatic equation of state

for the electrons,

A (2.56)

=Y
(PO+P)(nO+n) = Py

)
2

In (2.55), the dependent variables are the electric field, E, the
electron density perturbation, n, and the electron drift velocity, v,
Application of (2,16) indicates that these equations are not in Euler-
Lagrange equation form, They satisfy (2,51), however, so that the
differential transformation defined in Section 2.%.1 can be used., To
reduce apparent complexity, it is helpful to rewrite (2.55) in temms of

normalized variables, defined by

F -2 n= vl
= ; = 2 =% )
mvtmp no V_t A
® X _ v '
X:T ; T=uwnt 2 VY= ’ (2.5T)
t P
1/2 2 1/2
where v, [= (Po/m) ] and @, [= (noe /meo) ] are the electron

thermal velocity and plasma frequency, respectively. We then have, in

place of (2,55),
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From (2.48) - (2.50), and (2.58), it can be shown that are appropriate

transformation,

E c,, Cin cl3 f |
vl=lcy Syl le , (2.59)
n C o c h
" 3 32 733
should have the following elements:
=3 .= —3 =3
Cll=b§+a 3 Clezc-a—x aaT 3
S-S W S _Td
C13 va A% + c ST b v e 5 C21 c % B
- g -T-373 .33 _=®
022 d X s 023 d ST c v d 3 C31 = -a X Y »
_ & (3 _s 2 i3
cp= 2B o etk (2.60)

where a, b, ¢, d, and e are arbitrary constants, except that they should
make (2.59) a reversible transformation.

The correspondinglLagrangian density, obtained through using (2.25),
(2.39), (2.43), (2.46), and (2.48), may be expressed in terms of £, g,

and h as,
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+(b+vec )ﬁf (c+vd)axg+YaTg+aaTh
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s o — b, —= Nvd 2

+§§f —afh+(-2-+\)c+—2—-)h . {(2.61)

The Euler-Lagrange equations of {2.61} can be shown to agree with the

result of using (2.59) and (2.60) in (2,58).

2.5 Discussion

In this section, we have considered the inverse problem of the cal-
culus of variations for systems of first and second order gquasilinear
partial differential equations. The approach has been to compare the
form of the Euler-Lagrange equations with that of an arbitrarily chosen
set of equations. The resulting sufficiency conditions agree with
general results obtained previously by the more abstract method of imposing
conditions of potentiality of operators in a function space {Vainberg,
196L; Tonti, 1969). By restricting ourselves to equations of quasilinear
form, we were able to determine the Lagrangian density explicitly, if the
sufficient conditions are satisfied by the given set of differential
equations. As examples, the results were applied to systems of first
order linear equations, and second order nonlinear equations.

The explicit formulation described here has led to some success in

using differential transformations to convert non-Euler-Lagrange equations

to Euler-Lagrange equation form by changing the depéndent variables, The
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examples on the resistive transmission line and warm collisional plasma
served to show their importance. This operation, together with tﬁe
other transformation techniques discussed in Section 2.4, constitute
powerful mathematical ways to define appropriate generalized (dependent)
variables in a given inversge problem, This 1s complementéry to the
procedure of choosing suitable 'geometric' and 'force' variables in
physical variational problems, degcribed by Penfield and Haus (196?).

Our discussion of transformation technigques suggests some significant
problems for further study in the inverse problem of the calculus of
variations, For instance, recognition of equivalent systems of formally
different differential equations becomes important if the area of appli-
cation of the inverse problem is to be enlarged,

Although tgerﬁathematical approacﬁ is fiéofous, the need to choose
appropriate generalized variables, and to rewrite the equations in Euler-
Lagrange equation form, reduces the practical value of our approach to
the inverse problem in those physical situations in which intuitive energy
considerations can be readily used to guess at,-and establish appropriate
Lagrangian densities. The latter approach relies on the experiencé that
a physiecal system with well—defined energy can be described in terms
of Hamiltoﬁ's variational principle, The trial procedure then invélves
agsigning generalized variables, according to the number of degreces of
freedom, before guessing a Lagrangian density that includes various
fofms of kinetic and potential energies, The trial Lagrangian is then
checked by the relatively simple process of applying Hamilton's principle
to produce Euler-Lagrange equations that are the correct equations of the
problem, A small number 6f trial-and-error exercises may then result in
2 suitable Lagrangian density.



In anticipation of the Lagrangian applications to plasma physics,
to be discussed in Section 3, we may point out two other problems. The
first concerns the explicit distinction between dependent and indepen-
dent variables generally assumed in the inverse problem; the variation
principle establisheé in Section R relies on an unorthodox arrangement
which we term the 'dual role' of the variables, This dual role can be
understood to be some implicit dependence, in the form x[y(z)], with
both % and ¥y assuming the role of generalized variables, The exten-
sion of the present results to incorporate this dual role is a problem
that we have not had time to study in detail,

The second problem is related to the so-called 'Lagrange (or Bolza)
problem' (Rund, 1966; Bliss, 1946). This deals with the variation
principles whose solutions are to be determined under subsidiary constraints,
This type of problem immediately introduces serious practical difficulties
into the corresponding inverse problem, since there is no mathematical
rule to determine which of the given differential equations are to be
treated as constraint equations. Inlthe corresponding physical problem,
however, no such difficulty arises once the degrees of freedom are

determined.
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3. LAGRANGIAN AND HAMILTONIAN DENSITIES FOR PLASMAS

3.1 Introduction

In this section, appropriate Lagrangian and Hamiltoniag densities
‘will be established for the macroscopic model, in which the plasma is
described by Maxwell's equations and moments of the Boltzmann equation,

We shall first construct the Lagrangian density from energy considerations,
rather than the formal mathematical approach of Section 2, and then

verify its validity by applying Hamilton's principle to obtain the re-
quired Euler-Lagrange equations., Next, the corresponding Hamiltonian
density will be derived,

Lagrangian densities have already been obtained for plasmas under
various assumptions. In the microscopic model, in which the plasma is
described by Maxwell's equations aﬁd the Vlasov egquation, an.appropriate
Lagrangian ﬁas been cbtained by Low (1955)} The Lagrangilan in a
relativistically covariant formulation was discussed by Sturrock (1958a),
who pointed out a difficulty associated with the choice of variables:
the calculus of variations distinguishes between the generalized (dependent)
and the integration (independent) variables; the description of plasmas,
however, involves the charged particle trajectory, which is 6onventionally
treated in Lagrangian coordinates, and the electromagnetic field, Whiéh
is conventionally treated in Eulerian coordinates, The distinction is
illustrated in figure 3.1, which shows a particle trajectory in phase
space. The Eulerian coordinates, (x,v,t), describe the particle with
relat%on to a fixed set of axes,'whereas in the Lagrangian description,

the axes follow the trajectory and the particle location is denhoted by

‘
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Figure 3,1

¢y

In phase space, a particle trajectory ( ) can
be specified by its Lagrangian {initial) coordi-
nates, (Eb,XO,O), or its Eulerian (present)

coordinates, (x,v,t). The polarization vector,

£, used by Sturrock (1958), connects the real

particle trajectory (---) to a specified tra-

Jectory (——).
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To resolve this difficulty, Sturrock introduced a 'field-like"
expansion of the total Lagrangian with the particle position vector
written as x + g, vwhere ¢ is the polarization vector with respect to.

~

a specified particle position x, The case when £ is defined by com- °
paring the two position vectors simultaneously is also shown in figure 3.1,
Thus x becomes the integration varliable for both the ﬁarticle displace-

—~

ment, £ , and the electromagnetic field. On the other hand, Low pre-
ferred to modify the conventional formulation of the calculus of variations
in‘order to incorporate the two types of variables into his Lagrangian:

it is composed of two parts, one for the motion of the particles in a

given electromagnetic field, and the other for Maxwell's equations with
given particle frajectories. In the application of Hamilton's principle,
this réduires-tﬁét the electromagnetic pbténtials bhe treated as given
functions of particle spatial position, ,f ; in the variations with

respect to the particle trajectory, and that =x be

x (ED"XO’ E)y
treated as an integration variable in the variations with respect to the
electromagnetic potentials, Since the particle spatial coordinates play
the dual role of generalized and integration variables, while the
electromagnetic potentials play the dual role of given functions and
generalized variables, in what follows we shall describe this as the
"dual role" approach.

A Ls.lgrangian analogous to that of Low (1958) and Sturrock (1958a) has
not yet been presented for the macroscopic plasma model. There have
been successful attempts at derivation for simplified models,‘often using

Lagrange multipliers that necessitate the use of generalized variables

not corresponhding to the physical degrees of freedom, For example,
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Katz (1961) has given an appropriate Lagrangian for a one-fluid, com-
pressible plasma, with scalar pressure and adiabatic motions assumed,

He obtained Maxwell's equations and the equation of fluid motion by
application of Hamilton's principle, with the use of two Lagrange multi-
pliers to incorporate the fluid mass and charge continuity conditions. 8u
(1961) has obtained a suitable Lagrangian for an inviscid, adiabatic plasma
with infinite electrical conductivity. The resulting Euler-Lagrange
equations include Maxwell's equations, number density continuity equa-
tions, and three other equations from which the correct force law can be
derived, DBecause he used some implicit form for the pressure term in

his Lagrangian, the number density, n, was also treated as a generalized
variable. Newcomb (1962) derived the Lagrangian for a hydromagnetic
plasma, without using Lagrange mitltipliers, for the cases of scalar and
axisymmetric pressure, The mass and magnetic flux continuity equations,
and the plasma adiabatic pressure state equation, were treated as subsi-
diary constraints that define the variation of the Lagrangian and result
in the correct force law.

The foregoing results (Katz, 1961; Su, 1961; Newcomb, 1962) are
characterized by the absence of the dual role of the variables used in
their formulations. In contrast, our own approach in Section 3.2 will
follow that of Low closely: the plasma cell trajectories and the electro-
magnetic potentials will be used in dual roles. The Lagrangian thus
established includes tensor pressure and elastic collisions. Following
the technique of Newcomb, the first (continuity) and third (heat flow)
moment equations are used as subsidiary constraints to show that the

Euler-Lagrange equations obtained by application of Hamilton's principle
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are the second (momentum) moment equation and Maxwell's equations. Our
reasons for taking the "dual role" Low approach, rather than the polari-
zation vector approach of Sturrock, will become clear in Section k4.2,
where we shall show that the perturbation expansion necessary to treat
nonlinear wave-wave interactions is thus greatly facilitated.

After the appropriate macroscopic Lagrangian is established through
the dual role approach, an important question arises: does this form of
Hamilton's principle, synthesized at the expense of the explicit distinc-
tion between the dependent and independent variables, form an acceptable

+

basis for a plasma canonical formulation that agrees with the known

plasma equations? If this can be answered affirmativély,_the macro;copic,
as_well as“the Low Lagrangian, willkbe aqceptable in their total form.

This constitutes our motivation to derive the appropriate prlasma Hamiltonian
and canonical mechanics through the dual role approach. Furthermore, the
corresponding Hamiltonians will be readily subjected to perturbation
approximations, anaiogous to those applied to the‘Lagfangians (Low, 1958;
Sturrock, 1958a; Newcomb, 1962; Galloway and Kim, 197l; see also Section 4y,
The resulting approximate Hamiltonians, although not to be derived here,
should have important applications to nonlinear plasma problems (Sturrock,
1960a; Harris, 1969; Harker, 1970).

Sturrock (1958a) and Newcomb (1062) have derived Hamiltonians for
their quadratic plasma Lagrangians, In classical mechanics, if a
given.Lagiangian is at least quadratic‘in the derivatives of the
generalized variables, a corresponding Hamiltonian can always be
obtained (Goldstein, 1950), Obvious difficulties arise in the case of

the macroscopic Lagrangian to be derived, in which the variables play
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dual roles. Sections 3.3.2 to 3.3.4 will show how to modify the well-known
Legendre transformation ahd Poisson brackets so that the dual role is
embodied in a self-consistent Hamiltonian formulation. For completeness,

a Hamiltonian is derived in Section 3.3.6 from the Low Lagrangilan to
facilitate a comparison between the microscopic and macroscopic models

of plasma Hamiltonian mechanics,

3.2 Lagrangian Density

Newcomb (1962) has given the following Lagrangian density, Sy

2

w

P

i 2
'SN':EN—UN ] f%zﬁpu » UN=\(—1+ » (3.]_)

I

Ho

where 5& and UN denote the kinetic and potential energy densities,

respectively; o is the mass density; u and P are the plasma velocity
and scalar pressure; B 1is the magnetic field; v is the adiabatic index,

and R is the permeability of free space, Gravity has been neglected,

and the hydromagnetic assumption of infinite conductivity,
E+uXB=0 |, (3.2)

has been made.

Choosing x as the generalized variable, he applies Hamilton's

~

principle to the total Lagrangian,
L:J‘dx.ﬂ . (3'3)
v

The variations in p, P, and B, due to that in x, are defined by the

~

constraint equations of mass continuity, adiabatic state, and magnetic
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flux conservation, respéctively,

pdx = constant , Pp_Y = constant B . do = constant ,  (3.4)

m~ —~

where do denotes an area element moving with the Ffluid. The resulting

~

Euler-Lagrange equation is the appropriate force law in the hydromagnetic

!

approximation,
)
-g;c-(pu)+v.(puu)+VP—(VxB)XB:O . (3.5)

With the general form of (3.1) in mind, the main part of § will
bhe obtained in Section 3.2.1 by integrating the Low Lagrangian in velocity
space, Use of Eulerian coordinates in Section 3,2.2 enables us to
establish the necessary corrections to complete t?israpproximatelLagrangian.
Sectlon 3.2,3 confirms its validity by demonstrating that the corresponding
Euler-Lagfange equations are Maxwell's equations‘and the force law for

macroscopic plasmas,

3.2.1 Macroscopic Approximation to the Low Lagrangian

The total Low Lagrangian, LL’ has the form

eOEE )
] [V RARICHR R T B LS =
‘ 0
VO vV

4 = % VE(ED: :D’ t) - q[¢(§:t) - V(XO; 301 t) "ﬁ(i:t)] ) (3.8)

o~

where the summation ¥ implies more than one particle species; f is

the velocity distribution function; x and v are the particle position

e ~
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and velocity at time t; ED and XD are their values at t = 0,

v éenotes the spatial volume occupied by all the particles under con-
sideration at time t; VO denotes the spatial volume occupied by the
particles of a species at { = O, as is schematically shown in figure 3.2;
m and q denote the particle mass and charge; eo is the permittivity

of free space; , B, ¥, and A represent the electiric and magnetic

~

fields, and the scalar and vector potentials, respectively, where

3A

E:*le—"a‘r—; 3 E:?XA f (3.7)

Note that we have chosen to use V and V as shown in figure 3.2, to

O}
confine ourselves to a plasma temporarily enclosed in volume V at time

t, as opposed to letting V . » , as in Low's and Newcomb's work, The
double integral contains Fhe part {v the Lagrangian due to each particle,
whose first term represents kinetic energy and second term represents the
interaction energy of each particle with the electromagnetic field. The
second integral describes the energy associated with the free space
electromagnetic field. A careful discussion of the application of
Hamilton's principle to LL has been given by Galloway and Kim (1971).

The variation of L. due to the variation in x (50, AT t}, constrained

by the continuity of particles in phase space,
f(x,v,t) dx dv = constant |, (3.8}

and with the electromagnetic field treated as a given function of X,

gives the particle force law. The variations in ¢ and A, with x

treated as the integration variable, yield Maxwell's equations.
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Figure 3.2
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Particles of a species that occupy a spatial
volume V at time +t are assumed to occupy

a volume Vb at t = 0, This approximation

.is acceptable when t is sufficiently close

to t = 0,
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In anticipation of Section 3.2.2, the integration variables in LL

may be transformed from the Lagrangian (initial) phase space (ED’ XO}

to the Eulerian phase space (x,v). Applying the conservation of particles

in phase space

£(xys Vo) dxy dvy = I(x,v,t) dx dv (3.9)

transforms (3.2) to

dx £L s

|l
=
I\
<t e

2

e .E 2 .
m 2 0 B
5, -Zj.d:: f(ii’,‘i’t)(ﬁ vooagt q,‘:‘:f,) Y3 T (3.10)

0

Equation (3.10) applies to a collisionless {Vlasov) plasma, for which
f 1is the smoothed velocify distribution function. The elementary volunme,
or cell, qi, must be much larger than the mean particle spacing to |
Justify the smoothing, and much smaller than the mean free path to justify
neglect of collisions. The electromagnetic field variables are treated
as constants within dx, and represent the collective charge effects,

"collisionless micro-

We shall refer to this model, used by Low, as the
scopic model”,

The Lagrangian, L for plasmas in the "collisional microscopic

T}
model”, is identical to that of (3.10), but with different interpretations
for f, qi’.E’ B, @, and A; the distribution function, £, is now fine
grained; the cell, dx, roughly speaking, becomes smaller than the mean
particle spacing and larger than the size of the particles; the electro-

magnetic field variables include the microscopic particle self-fields

effective in collisions,
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Despite their similarity in form, LL and LT are not equal in
value., The difference can be determined by relating the quantities in

the two models by

P = qh + ¢R » 'ﬂ = + ER » etc,,

f(x,v,t} = £

M(f’:’t) + fR(i’X.’t) ? (3.11)

where subscript R denotes quantities which average to zero in a cell
of the collisionless microscopic model. Substituting (3.11) in (3.10)

yields the macroscopic approximations, Lé and L' of L and L as

L’ T L’

Lp=L/ +17 = Idg(%:+£”) ’

v
B | e b
e.E B
S ! NN S _ o' P
I'L‘Z:[s mp *ETE - anley f,D'fM>J+ 2 TP,
2 L2

¢ E- B
L, - - O R -— _,_R'_ -
= Z[Sd,‘f, fpalg - v fB)}M +[ 2 2;40]M ’ B_'lg)

where Tr represents the trace of a tensor; the macroscopic density, o,

drift velocity, Vp? and pressure tensor, P, are defined by

~

)
n = Idi fM(f_,’i’t) ) ,Y,D = 4q jd»‘: i fM(i)i:t) 2

P= mjdi(i'fﬁ)(i‘fn) fg(xvst) (3.13)

and the size of dx corresponds to that of the collisionless microscopic

‘model.
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If Hamilton's principle is applied to Li, the correct macroscopic
force law cannot be obtained as one of the Euler-Lagrange eguations, The
discrepancies arise in two ways, First, there is no term in ££ that

accounts for the energy associated with the heat flux, g, defined by,

o~

4= %jdi(i'r‘:n”i‘fnle f(xv,t) . (3.14)
To perform the variation of the term Tr,ffgﬁ one then has to assume

q negligible, Second, the Euler-Lagrange equation resulting from varia-
in f.(fo’t) is found to be correct only if the sign preceding the term
Tr'E/E in ££ is reversed. Clearly, it would be convenient if we

could prove that g7 =~ - Tr P. This would involve a statistical theory
of plasma fluctuations {Harker and Crawford, 1973), which may be con-
sidered as elastic multiparticle collisions, with the added complication
of elastic two-particle collisions, We shall take a much more direct
approach, however, Since we already know that the corrections should
contain - Tr P, and may result from including energy contributions

from the plasma fluctuations and particle collisions, we shall obtain

them from energy considerations,

3.2.2 Macroscopic Potential, U

We postulate that, for each particle species, the corrections can
be coﬁsidered as a macroscopic potential energy density, 1, that has
two parts: a random (collisional and fluctuational} potential, UR’
(when particle collisions are sufficiently frequent) and a heat transport

potential, U

u’ defined by,
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~1
U=Tptly Ufﬁfdiijd,‘if(i‘ji’t)ﬂn'fn o =T, (319)
AV
where, as shown in figure 3.3, AV is & macroscopic volume with size
much larger than the particle mean free path and a boundary moving with
a fixed number of particles of a species; the random collisional force,

and position of the particles, are defined with respect to the

Fr Zr’

macroscopic force, and the position, R, of AV, and @ is the

-—F\:M, ~
total density of heat energy transported across a macroscopic cell as it

moves along its trajectory, =x {x.,t) ,

E = JI dt i[f_.(EO’t)’t] . {3.16)
0

To obtain an explicit macroscopic expression for U consider the

RJ
following equation which appears in proving the virial theorem in classi-

cal mechanics (Goldstein, 1950b),

-gl-,; df_[di £{x, v, thnv « x = j d,’ijdl f(fjfjt)[m‘fa? (Fy + ) - x1, (3.17)
AV AV

where we have used the fact that the number of particles of a species in

AV 1s constant., Rather than averaging over a long time period, as in

classicél mechanics, we shall consider the approximation over a large

number of particles within AV, Expressing (3.17) in terms of the maéro~

scopic and random quantities yields

d 2 '
3t I d,fj'dﬁv, f m(:DE-‘-XRf.R) = AV{mnvy +Tr P+n EME)-I-J. dzfdl f Fpi¥p

av v (3.18)
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Figure 3.3 The size of AV is assumed to be much larger
than the particle mean free path so that the
Same particles of a species are contazined in
AV for a time period much larger than the
mean particle transit time across AV. fThis
assumption of large AV size enables us to
justify the necessary correction to the
V-integrated Low Lagrangian. It will be seen
in Section 3.5 that the large size assumption

is not necessary for the Lagrangian of (3.22),
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where VR is the random particle velocity with respect to jb' Since

[

vy = dR/dt and F = md:f_n/dt, (3.18) simplifies to

d
- . = e . .1
o QfSéi fm Va © Xp AV Tr E.+ 5 ijhf,f ER xp {3.19)
I\ AV '
The left-hand side of {3.1G) involves d{AV)/dt. In the case when this
is zero, e.g., in a stationary plasma, combination of (3.16) and (3.13)

then gives the expected expression,
U =Trp . - (3.20)

This agrees with a result obtained by Gartenhaus (1961), who showed that
the collisional interaction potential of a stationary gas is proportional
to the particle thermal energy.

" Combination of (3.16} and {3.20) gives a guess for £”, at least

for the case when sufficiently frequent collisions can be assumed,

£ - XU UV=Tr P+ v.q . (3.21)

Substitution of (3.21) in (3.12) then gives the total Lagrangian as

s dx § 3

v

o
i

m_ 2 1 : oM M

where the subscript M will be dropped from here on,
First, we should peint out that the assumption of a stationary

plasma in obtaining {3.20) can be relaxed for the purpose of obtaining

b



L in {3.22), if we let V tend to infinity. This can be seen by making
AV = dx in (3.19), and integrating dx over V = « , making the left-
hand side automatically zero because no particle now crosses the boundary
of V. Second, the assumption of sufficiently frequent collisions requires
that the size of AV be much larger than the particle mean free path. In
the following, it will be seen that this requirement is overly restric-
tive since the macroscopic quantities in (3.22) are well-defined in a

cell whose size need only be much larger than the mean particle spacing.

Further discussion of this point will be included in Section 3.k,

3.2.3 Application of Hamilton's Principle

We shall now test the validity of (3.22) by application of Hamilton's

principle, ©Nete that L contains the generalized variables x on,t),

A (x,t), and ¢ (x,t).

—~

Variation with respect to A and ¢: The variation of L with

respect to A and ¢ 1is comparatively simple since x 1s now treated as

~ ~

an integration variable, For variations §A and 5y, which vanish on

the boundary of ¥V and at times t and t the Euler-Lagrange equa-

1 2’
tions corresponding to
t
2
Izs dt .. (3.23)
t1

take the standard form {Schiff, 1968),

3| AL _ A 3l A 2L
at[a(ag/ati] a0 at[a(acp/at]'&‘ézo ;o (3.24)

~

%6



where the functional derivatives of L with respect to A and ¢, 1in

—~

Eulerian coordinates, are defined by

of 3 _|_ 02 a3 | of (3.25)
R L EYER ToooBw o ww ax a(dwex )y T

el

Using (3.7) in (3.22), and then applying (3.24), leads to the Euler-Lagrange

equations,

oE
1 ~
—II-O- v X E = €O g + 3 qn::D 3 GO . E = X qn . (3.26)

These equations, together with (3.7), form the set of Maxwell equations.

Variation with respect to X: For x variation, the Lagrangian is

o~

simply,

LE:jdX.EE 3
v

2 _ 1

5 2Tr3~v-g—qn(t?-XD-A) ; (3.27)

where the superscript E signifies Bulerian coordinates, and the integral
of the electromagnetic field energy in (3.22) has been dropped hecause it
has no effect on the resulting Euler-Lagrange equation (Hill, 1951,
Galloway‘ and Kim, 1971). The quantities vy B TrP, and 9¢.9Q

are to be considered as implicit functions of x via subsidiary con-
straints, [Otﬁerwise, the resulting Euler-Lagrange equation will be

a zero identity (Hill, 1951).] These constraints are the first and

third moment equations derived from the Boltzmann equation (Braginskii,

1965),
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an dv

— 4+ V. + .79 f = [ 3.

st Vgt W= o {3.28)
where C represents the contribution of elastic collisions, These are

the continuity and heat flow equations (Braginskii, 1G63),

1l d 1 m 2
= e + - Tr P V. + P +v. = - - . . .
[2 a (Tr2) TRV R, 4 :{} Joo 3 (Fere . e
The dyad notation will be used for dot products of adjacent vectors and
tensors, The continuity eguation is equivalent to the mass conservation
law, the first expression of (3.4), used by Newcomb (1962), but the heat
flow equation is not in the form of a conservation law such as the second

expression of (3,&),

Virtual displacement method: A modified version of the virtual dis-

placement method used by Serrin (1959) and Lundgren (1963) will now be
employed to derive the variations of L from (3.29), This method consists
of introducing an arbitrary parameter, €, into n (x,t;e}, etc. The

corresponding nonlocal and local variations are then defined as, respectively,

§'( ) = 3) (fo,t fixed, ¢ =0) ,

Ae

n

o ) =2 (x,£ fixed, &

~ x o) . (3.30)

For our problem, it is more convenient to use t in this role, without

introducing ¢,
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The nonlocal and local variations are defined in figure 3.4, from °

which we can write

tn(x,t) = n'(x,t) - n(x,t) (3.31)
with n’ denoting the density after the virtual displacement of

E(x,t) = g'-x | (3.32)

Variation in Vp' A schematic definition of 613D and QXD is

shown in figure 3.5, from which we obtain immediately

G’XD:XJ)(E,Jt) _"b(bt)zﬁ-—ﬁ=ﬁ ,
, ag
Sp =8RG -5 W (3.33)

where (3.32) has been used to obtain the first expression, and Taylor
series expansion of .XDJQEI,t) at x has been used for the second

expression,

Variation in n: We shall now use the first expression of (3,29)

to 6btain the virtuai displacement in n. First, we perform a real
displacement, Qﬁ(ﬁ,t}, of a plasma cell in a2 short time period, At,
with the particles of the species in the cell conserved. This operation
is illustrated in figure 3.6, which shows both Ax and"s. Applying

the first expression of (3.29) along the path, Ax, we obtain,
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Figure 3.4 The definition of nonlocal and local varia-
tions in n due to the virtual displacement
£(x,t)., The nonlocal variation, &, is
defined by comparing n° with n for the
same cell, while the local variation, §&n, is
for the same coordinate X, pbefore and after
the virtual displacement. The trajectories
of the same cell before and after virtual
displacement are denoted by — and ---,

respectively,
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Figure 3.5

The definition of nonlocal and local variations

in v due to the virtual displacement £(x,t).

~D
The nonlocal variation, btzﬂ, is obtained by
comparing v_ with v_ for the same cell, while

the local variation, QED, is for the same coordi--

nate Xx. The trajectories of the same cell
before and after virtual displacement are denoted
by — and —---, respectively. Th? virtually
displaced trajectory that passes through Qf,t)

is denoted by — + — + —,
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() n(x+Ax,t +At)
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b

nix,t)

(x,1)

Figure 3.6 The approach of a real displacement, AE, performed
in a short time period, At, +to the virtual dis-
placement, £, as At diminishes to zero. Since
(3.29) describes the changes in n and Tr p/2
along the path Ax, the virtual displacements in
n and Tr P/2 are then described by (3.29) as a

special case At — O and Ax =~ §,
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Ax
‘-2‘%+nV-A—'-”£ =0 , Mn=n'(x+ a5t -a(xt) . (3.34)

Since Ax and At are arbitrary, we can let Ax = E‘ when At = O,
Hence by definition, &n, the change of n 1in the real displacement,
approaches the nonlocal variation &'n. By cancelling At in (3.34)

hefore approaching the limit At = 0, we obtain

Anﬂa’n=-nv-5 . (3.35)

The local variation in n is obtained by subtracting _5- Vn from 5’n,

giving

fn = -¥.(En) . (3.36)

Variation in (TT‘R/2-+ V.‘g): The foregoing procedure can be applied

to any equation linear in d/dt and BT such as the second expression

in (3.29), Caution must be exercised, however, for those terms which do

not contain v_ explicitly. From (3.29), we have along the displacement

~D
AX
-% A(Tr P) + —% Tr P V. (4x) + ES‘V(AZE) + (V. q)at
m 2
=3 J‘v C dv} At - mj-x- (A,{‘,)C dv . (3.37)

When -At - 0, the term (m.fvzc qE/Q)‘At will vanish if the macroscopic
displacement QE does not significantly alter the microscopic random
processes within the cell, The term (V-‘g) At does not vanish: the
identity
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d d )
v.,il’:v.((—j?m): H(V’g)+ VXD:VE ’ (3.38)

implies the relation,
(Veg)at = A(V.Q) + V{ax):vQ . (3.39)

Substitution of (3.39) into {3.37) before taking the limit At = O, and

A = 6’, gives the following nonlocal variations:

1 1
6 (ETr3+v.g)=-§h£v.5-E:vg-vg:VQ—g- my Cdv . (3.40)

~ A e

The local variation corresponding to (3.40} is obtained by subtracting

£V (Tr P2+ v.Qq),

1
5(%'1‘1'2+ v.g)=~v.(§§n£+govg)—£:v~—5. myCdv ., (3.41)

The Euler-Lagrange equation with respect to x: We are now in a

E
bosition to derive the Euler-lagrange equation from L by variation with

E
respect to x. The starting point is the integral of L from time

L
1E=J- at rE . (3.42)
t

Because the integration variables are X and the time t {(for fixed x),
local variations are to be used. The vector £(x,t) is assumed to vanish

on the boundary of V, and at times t1 and t2. Using (3.27), the
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variation of (3.42) becomes,

2
s1° =_f dat 8%
¢

J-d,_:s{ﬁn[ vy T CI(QP‘}LD Q)] tn GXD- (mXD+ qr{\J) - 6(—;— Tr P+ V. g)‘ . (3.43)
v ‘

Substituting (3.33), (3.36), and (3.41) for QED’ bn, and 8(Tr P/2 + Vl,g),
(3.43), integrating by parts thﬁse terms involving (35/3t} and VE,

dropping any surface integral that involves '5 on the boundary of V,

and dropping any initial (tl) and final (tE) terms that involve &, we

cbtain from (3.&3) by straightforward manipulation the following result,

Use of the dyadic relation,

Yp X (Vxé)=vﬁ'l’,n‘l’n-% , {3.45)

and substitution of (3.7} and the first expression of (3.29) in (3.4h),
finally gives the Euler-Lagrange equation as
dt ~ ~D "~

dvD .
mn ——+ V.P = qn(E+ v XB)+J‘m'_\Lc dv , - {3.46)

which we recognize as the macroscopic force law, with general pressure

tensor and elastic particle collisions (Braginskii, 1965),

25



In the above derivation, @ 1is not restricted any further than by
its definition in (3,16), The form V *Q in the integrand of L is
not sufficient to make E, disappear from the final form of ﬁLE, since
Q is in general nonzero on the boundary of V. In arriving at (3.44),
however, it can be shown that Q appears in the integrand of 6LE”on1y
in the form, V. Ls . ¥Q), and hence drops out since £ vanishes on

~—

the boundary of V.

3.3 Hamiltonian Density

¥hen the independent (integration) variables of a lagrangian, L,
are distinctly different from the generalized variables, and L is qua-
dratic in the time derivatives of the generalized variables, the
Hamiltonian, H, can be obtained by straightforward application of the
well-known Legendre transformation (Goldstein, 1950). The canonical
Hamilton system of equatidns is then cobtained by varying each of the
generalized variables, and their conjugate momenta, separately,

For L of (3.22), however, the dual role of the variables calls for
additional care in formulating the correct Legendre transformation. If
the momentum conjugate to x is defined as

_ BL

l]-E = a—iD.—_-n(mv o+ q’{-\_’) , (3.47)

~D

by the use of (3.25) in the Eulerian coordinates, ’HE will be dependent
on x, because x 1is the integration variable, This violates the re-
quirement of the Legendre transformation that QHE and 6x (=&) are to be
independent of each other., A way to avoid this difficulty is to trans-
form the integration variable from x to Xy for that part of L

describing the particles, so that the integration is effectively performed
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at t = 0. The dual roles played by ‘Q and ¢ require that thei;
dependence on X5 he only through their explicit dependence on Ei(ib:t)'
The momenta conjugate to the electromaghetic potentials must be defined_
only in the Eulerian coordinates (x,t) (see Section 3.3.2).

The validity of the foreéoing modifications to the Legendre trans-
formation will be esfablished in Section 3.3.3, where the Hamilton equa-
tions will be shown to agree with the‘Euler-Lagrange equations obtained
in Section 3.2.3, After making similar changes in the definition
of the Poisson brackets, the energy equation is obtained correctly,
proving that the canonical formulation is self-consistent.

For completeness, a Hamiltonian corresponding to the Low Lagrangian
will be obtained in Section 3.3,6T".The,resu1ting total mieroseceopic and
macroscopic. energy cénservation.eqﬁations will be compared to help clarify

the meaning of the macroscopic potential, U,

3.3.1 Ilagrangian Coordinates

In deriving their variational principles, Katz (1961) and Newcomb

(1962) used the transformations between X and 2y extensively. These

transformation relations include, for X on,t), the Jacobian, J, the

transformation matrix, Xij’ and its inverse matrizx, Kij’
ox axi axoj '
J =g ; X, . = ) K, .= : (3'1"8)
p
a»O ij axoj ij axi
whence it is easily shown that
3(JK..)
-Bi Ji’ "
3% K 2 Kei¥iy = Oy 0 3x o dx = Jdx, , (3.49)

i3 : 0J
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where aij is the Kronecker delta with respect to the Cartesian
coordinate indices 1 and j, and the summation convention has been
X ). By conservation

implied. The initial value of n(x,t) is n

of particles along the cell trajectory, we have

m%:rb@h s n. = dJdn {3.50)

Under these transformations, the Lagrangian, L, of (3.22) becomes

2
[ o
S \ O B \
L= ) 'g dzo £,s + gd‘:( _ 2
Vv

The time derivative, '% (= dx/dt), wused above is taken with fixed x._.
The Xx-dependence of é' and ¢ in the integrand should be retained,
in keeping with the dual roles of these variables,

The Euler-lagrange equations with respect to ﬂp and 9 need not
be explicitly rederived in the Lagrangian coordinates (Eb’t)‘ They
should agree with those in the Eulerian coordinates since Hamilton's
principle is invariant under transformation of integration variables
(Courant and Hilbert, 1953). The variation of L with respect to x,
however, should be re-examined, since X 1is no longer the integration

variable. To do so, only the part Ls’ corresponding to a particle

Species,



hés to be considered. The standard form of the Euler-Lagrange equation

for X is then

In Lagrangian coordinates, the functional derivatives of LS with

respect to x and '% have the forms

(3.54)

Bxi - Bxi onj\axij aii - aii ox, . aiij

L 3L 3 {a.cs) L ass 3 (ass)

2 OJ >
which may be cdﬁpared to those for @JL/#A, etc. in Eulerian coordinates
in (3.25’.

The only part in £§ -whose partial -derivatives with respect to x;
and xiJ are unknown at Fhis point is TT‘E/E + v *Q. To obtain them,

- we use the heat flow equation, but in a different fashion from that of

Section 3.2.3. In Lagrangian coordinates, {3.29) becomes

d
-d?(Tr P)+

Mot

T‘rEV-i+£:V§:+V.g=I§(V2-21-3:5)Cdv s (3.55)

where the gradient, V¥V, is to be read as Kji a/axoj. Replacing .

=]

by the dyad identity (3.39) converts (3.55) to the form

d 1 i 1 * .
— . = - — K -
( Tr P+ ¥ Q) = 5 {(Tr P) i %54 P K x,

aQJ : . m 2
- \3 Kkj xik - j%vi x:,L C qE-+.[§ v C dv
3 1

. 3 )
. gx (% Tr P+7 -g)xij+5x—(—2~ Tr P+9 .g)xi+ﬁ(§ Tr£+v.3) , (3.56)




where the third formal expression is obtained by treating Tr‘2/2+ V.q

A~

as a uniquely determined function of xij(t), xi(t), and t, Thus,

by equating the coefficients of iij and ﬁi’ we obtain

%x—(% Tr£+v_3)=-jm v,Cdv %’E(% TrE+V.E)=I—E— V2Cd:.:. (3.57)
i

These relations enable us to find expressions for BLS/Exi by deriving

B£S/axi and B£S/Bxij. from {3.51), After some algebra, we obtain

aQ
d 3 3 k
- + V. - —_—
J KJk axoj Plk KJI aij ( B«) Kjk BXOJ, (ax ) ?
%: ny(m x+ qa) . (3.58)

By replacing Kji a/axoj by B/axi, we find that the two terms involving

o

in the first expression in (3.58) cancel each other. It is now
straightforward to use (3.49), (3.50), and (3.58) in (3.53) to show that
the resulting Euler-Lagrange equation is identical to (3.46}, except

for a multiplicative factor, J.
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3.3.2 Modified Legendre Transformation

Since x is no longer formally used as an integration variable in
(3.52), the momentum variable conjugate to X for each particle species

can be properly defined as (Schiff, 1968)

L
;;}‘ = 1= no(mx + qa) (3.59)
where the second expression of (3.58) has been used.
The momentum variable, @, conjugate to A, must be defined
differently, It is reasonable to let @ have exactly the same dual
role property as 'é has in L, The way to assure this is to make
(ﬁbt)! rather than (Eb’t)’ the independent variable in the definition

of Q. Thus, we have

,CE = TB agi"r)‘t ; _(3.60)

which, by using (3.22), may be put in the familiar form (Schiff, 1968),

2
a = eO(ch+ ‘-a"-é)z -6.E . (3.61)

A momentum variable conjugate to ¢ does not exist, because L does
not invelve 3g/3t.

Since the conjugate momenta of (3.59) and (3.61) are defined in
Lagrangian and Eulerian cqordinates, respectively, the Hamiltonian must
be defined by adding cdntributions separately from the plasma variables
(x,7) , and the electromagnetic field variables (£?Qb¢). It is given

-by the following modified form of Legendre transformation
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A P4

- L, (3.62)

= --+ o -
Zf axy % S%N
VO \4

which is assembled in a similar form to the Low Lagrangian, LL in
(3.6), and the macroscopic Lagrangian, L in (3.51). Substitution of
L from {3.%51), and elimination of 35 and 8A/3t by use of (3.%59)

and (3.61), reduce H to the form,

IR

2
2 |vx al
(04 ~
szs dfOHs+ jdxaeo 2u0 - A ?
A v

H = [ﬂ—an[ *oan@ + J(;'I‘r2+v-g) . (3.63)

s 2mn0

Alternatively, H can be transformed to Eulerian coordinates by use of

the last expression of {3.49) and the first expression of (3.50),

H:deh— 3
\'s

2
> 2 |vxal
S Fa ol 4+ Z Tr P+ V7V Q+ + - 0.9, (3,64
H Z[amn qna 5 Ir B+ 9v-Q qn@]+ 2¢, 21, g7 . (3.64)
By use of (3.59) and (3.61), we have from (2.64)
2
e E 2
H:Z(%I}-VD %Tr£+V-Q+ qn'iP) g +“E2‘u—+ €&E - W , (3.65)
0

which is the familiar form of energy density for a plasma, plus the term
v o ,% The latter represents all of the energy density lost through
heat conduction prior to time t, by a cell of a particle species, as

it moves along its trajectory.
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It is of interest to compare H with that given by Schiff for a
quantum mechanical system of charged particles in an electromapnetic

field [Schiff, 1968, equation (57.4)]

HQM = jdx HQM »
2
2 | 7x a)
1 . 2 2 2 a il
HQM = En- ‘("111‘7 = q’{k_’)ly‘ + VQM,TI + qCPI‘J:" + 260 + 2”’0 - 2",' v 2 (3'66)
now written in MKS units, In (3.66), Y and Vau @re the Schrodinger

wave function and potential, respectively, and -ihv  is the particle
momentum operator. With the understanding that |Y[2 is equivalent to
particle number densit&, a term-by-term cofrequndenca is obse¥ved
between (3.66) and (3.64), with the potential energy density VQM'?|2
corresponding to Tr E?E + v -Eb in agreement with the interpretation of

the negative sign that the latter has in the macroscopic Lagrangian,

3.3.3 Hamilton Equations

The approach of Section 3.3.2 has been plausible. To establish
that the formulation is self-consistent, we should vefify that the
Hamilton equations derived from H agree with the Euler-Lagrange egqua-—
tions derived from L.

Using (3.59) and (3.60), the Euler—Lag?ange equations, (3.53) and

(3.24), become

&
AL _ sL i SL
=1 mtwm o w0 o (3.67)

The variation of L of (3.51),
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. a(s4)
8L = Ef %(ax 5+${--5)+ dx[% a(ail/‘aﬂ 5t BCP GCPJ ,  (3.68)
v v
0

can be put in the form

6L:ZI dg_co[é’(ﬂ'iﬁﬁ‘?‘m
VO

~

o
Ay & 3A
*.[dfi (~é_t) BRI T ~]’
v (3.69)

where (3.59), (3.60), and (3.67) have been used, and & (87)

is the
local (nonlocal} variation defined in Section 3.2.3

(3.62) conse

congsequently

The variation of

n A
jdﬁ(ﬁ'%‘a_t'ég) - (3.70)
v

Since the variables in H to be separately varied are

it is convenient to write

s T, A, &, and
¢,

&80 as

EJH ’ gH BH
8H = ZI ( E'ﬂ m) + f dx ( 6A+
v

)

are analogous to those of
given in {3.54) and (3,25).

L

Comparison of {3.70) and {3.71) shows that the correct forms of the

Hamilton egquations, for macroscopic plasmas described in terms of variables
with dual role, are

Bqﬂl
=3
A3

1l

¥,
Yol b

(3.72}

which are identical to (3.59) and (3.61), and
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mo |
ol =0 - \ (3.73)
The last two expressions of (3.73) lead to (3.20) by straightforward

differentiations of (3.64) before using (3.61). The right-hand side of

the first expression of (3,73) can be written as -aﬁg/axi +

(B/BXOJ)(BHS/axiJ). Its first term can be derived from (3.63) as
34 3A
s g J 8P _
ax_i = T n (nj“anAj) Ex—i+ Qno %1 ijvi C d’Y_' s (S-TJ-I-)

where the second expression of (3.57) has been used, Its second term

can be shown to be

é___(ifi_)_.JK- é———(§?f)'iK EEEE - JK é__;(E?E); -J EEEE (3 7:)
axoj axij I 1 onj ox ik axoj ik axoj ox_ [~ 8x - Jele
where the first and third expressions of (3.49), and the first expression
of (3.57), have been used to obtain.the first result, and the relation,
a/axi = Kji a/axoj, has been used to obtain the second result. It is‘
then straightforward to show that the first expression of (3.73) is equiva-
lent to (3.46) by the use of (3.75), (3.74), (3.59), (3.45), and the

relation, X =

p

' 3.3.4 Doisson Brackets

Poisson brackets are convenient in writing down the time derivative
of a physical quantity in a system that is formulated in terms of a
Hamiltonian. They must also be modified on account of the dual role of
the variables., Consider in general a physical quantity G, which is a

functional of x, Ib A, O, ¥, and their first derivatives., Without
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loss of generality, we may write

Vv AY

G = Id5g=§ jdicogs+ J’d’_)f’gm s (3.76)
v
0
where gEM is a function of A, &, ¥, and their first derivatives, only,
and 5% contains terms that must involve x, Ib their first derivatives,

and Tr P/2+ V-+Q. The time derivative of G can be obtained by

accounting for the dual roles played by the variables, x, 1, 4, Q,

and @, in G. This requireg that
d§
dG s as
—_— = -t = d .
- E S dx, o7 5 x G, (3.77)
Vv
Yo

where, in the right-hand side, the first time derivative is defined with
A, @, and ¢ treated as given functions of X, and the second time
derivative is defined with x and 1 treated as constants. Use of the

Hamilton equations, (3.72) and (3.73), transforms (3.77) to

dG 3G 7 . ‘
STkl e Tl en-fesn o om
L oo &g 5

where the plasma and electromagnetic field Poisson brackets, and the

functional fluxes, :J:S and im, are defined by

66



{ _ (ﬁ.j_@.m)
e .f%zs 28 E)
N,N V
0
¢
S H - .f 45(29 ,PH _ 2  PH, BG __) ,
1 ;A?EPQ 4 gA B 0 gA B9 Ot
' 3G a8 .
- =as§+§(§_a—7n ,
8j xij i ﬂi/ ij i
39 %M a0 ¥ g 39

+

~ Ty = 3(3, /3% ) 3¢ 3(a%,/%x) B * 3(39/3% ) 8t (3.79)

In the integrals of (3.78), S, and S are the bounding surfaces of

V. and V, and dg., and do are the elementary surface'areas, with

0 ~0
vectors taken along the outward normals. The partial time derivative,

38G/8t, takes care of any éxplicit time-dependence that G may have in

addition to its implicit time-dependence through x, T, A, &, and ¢,

3.3.2 Energy Conservation Equation

ﬁquation (3.78) can be used to formally separate the time deriva-
tive of any physical quantity into the bulk and the surface contributions,
and the plasma and electromagnetic field terms. As a demonstration that
the fﬁregoing formulations are self-consistent, the total energy con-~
servation equation is derived by substituting H for ¢ in (3.78).

We cobtain

di
a—t—+2§ d'g"o -:53'1‘ J‘dgozmzo 3 (3.80)
5o

where the plasma and electromagnetic energy flux densities, ?S and

K3 respectively, are given by
~EM’ 2
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dA
R S - 9%
‘fmj_-“O atxg esE S . {3.81)

A more familiar form may be obtained from (3.80) by use of the third

expression of (3.48) and (3.49), and the second expression of (3.50).

After some manipulation, we have

g—t [ﬁdx—z(v-gdz)] + dﬁ(v-:{) =0

o~

BA
_ . I S - 39
T=HZ oY) - B ol - (3.7
By use of the identity,
& (dx) = dx(9 -y, (3.83)
dt * <0 T RV <D ’ .

and the differentiation scheme of (3.77), we can further transform {3.82)

to the following form in Eulerian coordinates,
& (-Z9rQ) 4 V-5 =0
At - .?Qu) v o T 2
g = E—r_l. 2 l . 1 a
:t‘Z[Xn(e p T2 Tr}i‘,)*!i X,D+g]+ - ExB-xo (e E9) . (3.84)

Since H - £ V-Q 1is the energy density in the plasma at time t, (3.81),
to which (3.84) is equivalent, is the correct expression of energy con-

servation in the mixture of Eulerian and Lagrangian coordinate systems.
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It is also possible to derive (3.84) by evaluating 3H/3t from (3.65),

and then using (3.20), (3.46), and Maxwell's equations.

The derivation of (3.8&) completes our development of a self- -
consistent Hémiltonian description of a plasma in the macroscopic
approximation; the difficulties associated with the dual role of the
variables in the description of the field-particle system, originally
‘pointed out by Sturrock (1958a), have been resolved. Since the Low
Lagrangian also assumes dual role, the microscopic Hamiltonian descrip-
tion of a Vlasov plasma can also be established in a similar fashion, as

" will be shown briefly in the next section.

3.3.56 Microscopic Hamiltonian Density
By the use of the Low Lagrangian in (3.6) and (3.10), the conjugate

momenta can be defined in forms analogous to (3.59) and (3.60) as

A(x,t) = 3raET = ST - =
RBY = Faassty ~ WA/ T x| 3 Pasamat) |
~ i

%A
VD £ &
EO ('P+ at 3 (3-8/)
where the second expression for 'é follows because {, does not involve
B/QEO and B/azo terms.

Thé corresponding Hamiltonian is defined analogously to H as in

(3.63),

4 Y 4

- - (3.86)

€9



After some manipulation, this takes the form

2 Joxal®
H:Z dx. Vav. f{x,v.)h+ | dx|o— + . —a. T
L ~0 }"~0 TM0’~0 ~|2e, = =2 ’
A v

h:-;—m—,;—qA|2+ @ . (3.87)

~ e

The Eulerian form of H,  can be obtained from (3.87) vy use of {3.9),

2 B
" =ZI“E, f(f;,‘ist)(g"“ * qq’) t g Tt R T . (3.88)

With the definitions of (3.85), the Euler-lagrange equations of L.

are

3L L

o My ?
gx ~ 2 A

, o= 0 . (3.89)

4 Bred

These can be shown to represent the microscopic particle force law and

Maxwell's equations. Taking the variation of H and using (3.89),

L,

the Hamilton equations are easily obtained as

j - o, = . R T AN
¥ 0 mT®R O AT T®Hm O m-Tmooc E -

(3.90)

Since HL does not involve the derivatives of x and { with

respect to Eb and AT it suffices to consider a physical quantity,
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G, for plasma with the same simplification., We may write

[]
n

J- ax§ (x, 0 2,A,9)
v

EI di{OJ'dXO f(fo,f_o) gs(.—i’—g) + J‘d‘z‘i Qm(i,g,if’) . (3‘.91)
VO v ‘

)

The expression for dG/dt analogous to that of (3.78) is then obtained
as

dG

2= fonf + lom ‘§d~'fm ‘ 3.92)
v

where the microscopic Poisson brackets, and ﬂﬁMj’ are defined by

3 P, ye B

R
e

#H
. 26 #H _ 3G, L, 363
- !‘*‘*(@a E A wat) ’
o 2 g Y L2038 (3.93)
my T 3t T B(3M/Bx) B T S(&/Bxy) 8t a(swsx;) ¢ 7Y

The energy conservation equation in the microscopic plasma model is ob-

tained by replacing G by H_ in (3.92). We obtain

L
dn 34
_._L . — — = 1_. _:.\_J - _a_tE
at 5“‘5 =0 5 g - TR TR B - (3.9

By use of (3.88), the following is obtained from {3.Gk4)
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!
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Figure 3.7 The conceptual difference between the cells of the (a)
microscopic and (b) macroscopic models in a collisionless
plasma. The arrows in (a) indicate the motions of the
particles that carry the boundary surfaces of qi with
them. In (b), dg is the surface area of dx with an
outward normal. The cell, qf’ in the macroscopic
model, can only move with the macroscopic drift, ¥
The particle thermal motion then gives rise to momentum

and energy transfer across do,
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& (ax )+ ax(v - g) =0 . (3.95)

A comparison of the energy conservation equations in the microscopic
and macroscopic models, (3.95) and (3.82}, respectively, can be found

in Section 3.4.3.

3.3.7 Entropy for Plasmas

In this section the Lagrangian and Hamiltonian fogmulations have
been developed, so fér,for the purpose of obtaining self-consistency and
coﬁsistency with tﬂe well-known equations descriﬁiﬂg plasmas in the
macroscopic model, e.g. the force law, Maxwell's equations, and the
-energy conservationh equation. Now; the dual role approach has resulted
in a canonical formulation of plasma dynamics in‘wpich the plasma and
electromagnetic field variables are all treated as canonical variables.
it is proposed that these canonical variables may also he effectively
used to expréss other plasma guantities of interest, such as the appro-
priate plasma entropy.

The question of whether the Gibbs or the Boli{zmann H-function is
the correct definition for a many-particle system with arbitrary inter-
particle forces, has been discussed by Jaynes (1965).. He concluded
that an appropriate definition of entropy must include all of the degrees
of freedom that we intend to use for the physical system. In this
section, the numberlof degrees of freedom equals the number of generalized
field?like variables, Thus an appropriate expression for entropy in the
macroscopic plasma model can be obtained only in terms of all of the

generalized variables and momenta. Since the Boltzmann H-function, in

4
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its hydrodynamic form (Braginskii, 196%5),

nolvn

fan+ s, (3.95)

oo

s-fexsn . F-dtimn -
is defined without including the degrees of freedom associated with the
electromagnetic field variables, it clearly does not represent the total
entropy of a plasma in the macroscopic model.

Consequently, the Boltzmann H-theorem is likely to be violated in
plasmas whenever the process involves an appreciable change in the electro-
magnetic field energy. This conclusion agrees with recent results of
Jaynes (1971), who has ghown that the necessary condition for violating
the Boltzmann H-theorem is that the initial kinetic energy associated
with particle velocities, both drift and random, be greater than the
equilibrium kinetic energy. The difference is then converted into
potential energy, associated with particle interaction forces, both
collective and random, during the evolution towards equilibriun.

An important question which we have not had time to pursue is the
nature of an appropriate expression for plasma entropy based on the

canonical models established in this section.

3.4 Discussion of the Macroscopic Potential, U

In this section, we have been'mainly concerned with a rigorous
verification of the Lagrangian and Hamiltonian formulations for a plasma
in the macroscopic model. However, in order to obtain the correct
macroscopic Lagrangian, a heuristic argument that assumes sufficlently

frequent particle collisions was used in Section 3.2.2,
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This assumption was in turn found to be overly restrictive because
the macroscopic Lagrangian and Hamiltonian, verified in Sections 3.2.3
and 3.3.3, respectively, are equally applicable to a collisionless
macréscopic model when the moments of the Vlasov equation are appro-
priate. Therefore, it is of great interest to find a reasonable
explanation for the necessity of introducing U of (3.21) also for
the ce¢llisionless macroscopic plasma model, We shall proceed by con-

sidering the relation of 1 +to viscosity and heat conduction first,

3.4.1 Relation of U to Viscosity and Heat Conduction

According to (3.21), U represents twice the thermal energy density
of a particle species plus the energy densit§ lost due to heat conduc-
tion by a macroscopic plasma cell, as it moves along its trajectory.

The relation of U to viscosity and heat conduction can be further
demonstrated by considering the particles of a species in a macroscopic
cell, qE, that has a size much larger than the mean particle spacing
and follows some trajectory in the plasma. By the use of {3.83), (3.29),

and (3.38), the total time derivative of U within dx 1is given by

s

3Q
g; (dx U)=d5[-2£:VXD+Im{v2_2XJ-XD)C dv + V‘(linv'?f t-2g)] . (3.97)

The first term in the right-hand side brackets represents twice the time
rate of heat generation in qi due to viscosity and mechanical compression
{Braginskii, 1965)., The second term is twice the time rate of heat
generation in a particle species resulting from collisions with particles
of ofher species., The third term contains twice the rate of energy

gain due to heat conduction.
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If (3.97) is integrated over V, before summing over all species of
particles, the collisional term will drop out because of conservation of

energy and momentum in elastic collisions, Equation (3.97) then becomes

3Q
%E dﬁ(z U) = 5(152 [-QB:V.Y,D+ v - (fbv "Q+ ~a—'}c‘- 25)] . (3.98)
v v

The phenomena of viscosity and heat conduction, which are usually regarded
as dissipative, are being compensated for., The total energy of the plasma
in the macroscopic model, as dencted Ly H in (3.63)-{3.63), is con-

served through the inclusion of -U in ££ of (3.12).

3.4.2 Loss of Particle Discreteness in Applying Macroscopic Approximation

Equations {3.97) and (3.98) are applicable also in the case when
collisions are negligible, e.g. in the macroscopiec approximation
of a2 Vliasov plasma with the size of qE much larger than the mean
particle spacing. 1In this case, the argument of Section 3.2.2 that leads
to the expression for U is no longer appropriate because the assumption

of frequent particle collisions within dx is no longer wvalid.

The following question consequently arises: why is it still necessary
to include U in ££, in the macroscopic approximation of a Vlasov
blasma, to obtain the correct macroscopic Lagrangian, L, of (3.22),
now that UR in (3.15) can no longer be considered as the energy
associated with particle collisional interactions? This question suggests
the fbllowing argument; that it is actually the loss of particle dis-

creteness in applying the macroscopic approximation of (3,12} which must

be compensated by the correction expressed by (3.15).
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In the collisionless microscopic model, the trajectory of each
particle is, in theory, to be solved. When the Low Lagrangian is
written, the cell dx 1is used for the purpose of summing the contribu-~
tions of particles within qi. Owing to the assumed particle continuify
in phase space, the bounding surface of qi in this model is considered
completely flexible; if qf is cublic at time t, we can, in theory;
always - deform the shape of qi to include the same particles at some
later time. This definition of qﬁ is illustrated in figure 3-7(&),
which implies that, in the microscopic model, as long as the particle
trajectories are Solved, there is no momen;um and energy transfer
across the flexible boundaries of qE. In the macroscopic model, however,
particles of the same species are indistinguishablg. Only the spatial
coordinates of the macroscopic cell, QE; can be used to identify the
plasma, as shown in figufe 3.7(b). Although moving with the drift velo-
city, Y the macroscopically smooth boundaries of qE are penetrated
by particles due to thermal motion. ' This then gives rise to the well-
defined ocutward macroscopic momentum and energy transfers V :E qi and
v 'Elqi, rexpectively, from qi‘ Furthermore, since elastic collisions
conserve mecmentum and energy, they do not‘affect these macroscopic trans-
port phenomena. In terms of these momentum and energy tfansfers, the
dynamics of the cell, éﬁ, and that of a cell, AV, introduced in
Section 3.2.2, become identical. The macroscopic potential energy of

(3.15) must'correspondingly be introduced for a collisionless macroscopic

Plasma.
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3.4.3 Definitions of Plasma Cell Boundary

That the microscopic and macroscopic models define the boundary of
a spatial volume differently can also be seen by comparing the micro-
scopic and macroscopic energy conservation equations, {3.95) and (3.82),
respectively. We see that the difference hetween the microscopic and
macroscopic energy flux densities, ¥ in (3.94) and g in (3.82),
respectively, is the flux density, Z (E -XD*-E), associated with
particle thermal motion. Mathematically, this flux density is absent
in F because the microscopic Hamiltonian, HL in {3.87), does not
contain any derivatives of x and ’g with respect to S and Yo+
Physically, this difference between (3.9%5) and {3.82) is attributable
to a difference in defining the microscopic and macroscopic plasma cell
boundaries,

Consider the time derivatives of H_ in (3.88) using two different

L
definitions of the volume, V. First, define V as a stationary volume.

We have,

2
€
OE 2

oH
L 2
=t Ef asfar[2 ¥ $aq & (1) +j ax %E(T+ el N vav) , (3.99)
v v

which can be reduced to the macroscopic energy conservation equation,
(3.82), by use of the Vlasov equation, Maxwell's equations, and integra-
tion over velocity space (Van Kampen and Felderhof, 1967). Second,
define the boundary of V as moving with the enclosed particles, so that

the Liouville theorem can be applied. We then have

Zfdﬁj'dx f(,..}_‘,’f,’t) = Zj‘ dE-OS dy,, f(’?EO’«EO) = constant , (3.100)
Vv v
0

78



because of (3.8). The total time derivative now becomes,

5 ,
dH dv e.E 2
L ~, d d 0 B
—_— — g all o . ,101
dt - Zjdi‘,sdx[f my, dt+thfp(35:t)] tar) BT et R (3.101)
v v .

which can easily be reduced to the microécopic energy conservation equa-
tion in (3.95) by use of the particle force law, Maxwell's equations,
an& integratidn over velocity épace.

Since these energy conservation equations, (3.95) and (3.82}, are
also derivable from their corresponding Hamiltonians, (3,87} and (3;63),
which are in turn derived from the corresponding Lagrangians, (3.6) and
(3.51), it is seen that the difference between the Low Lagrangian, Ly
and the macroscopic Lagrangian, L, 1is to reflect the difference in

defining the microscopic and macroscopic volumes (or cells) and their

boundaries,

3.4.4 Relations Among the Variational Principles of Various Models

The arguments of Sections 3.2.2 and 3.4.1 - 3.4.3 are helpful for
the purpose of understanding the macroscopic Lagrangian, L, and potential .
energy deﬁsity, U. The relation between these viewpoints can be under-
stood from figure 3.8, which compares the plasma variational principles
of the collisional and collisionless microscopic models defined in
Section 3.2.1, and the macroscopic model. Procedure 1A involves dropping
the random terms defined in (3.11) to relate L, to Ly, wvhile

Procedure 1B involves only smoothing within the macroscopie cell, dx,

as described in {3.12), to obtain L~

T from LT’ by keepihg the quadratic

random terms. Procedure 2 reflects the difference in definitions of

the plasma volume, V, or cell, dx, 1in the microscopic and macroscopic
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Relations among the variational principles of various plasma models.

Here

represent the total Lagrangian and Hamiltonian, respectively,

in the collisional microscopic model; L; and H  represent the {Low)

Lagrangian and Hamiltonian, respectively, in the collisionless microscopic

model; H.P. represents Hamilton's principle; L.T., represents the Legendre

transformation, and E.C.E. represents the total energy conservation equation.




plasma models, as discussed in Section 3.&.3, with regard to the energy
conservation equations in the two plasma models. In the case of &
collisional plasma, Procedure 3 represents the heuristic approach of
Section 3.2.2 that led to the appropriate expression of U in (3.21).
For a collisionless plasma, Procedure I represents the argument of
Section 3:h.2 that discusses the loss of particle discreteness when we go
from the microscopic model to the ﬁacroscopic model, and the dynamic
equivalence between the macroscopic cells of the collisionless and
collisional plasmas, so that the introduction of U is seen to be
necessary also for the collisionless macroscopic model,

All of these arguments should bé considered less rigorous, for the
purpose of proving the validity of L of (3.22), than the rigorous
verification by application of Hamilton‘s principle in Section 3.2.3.
These different viewpoints do, however, converge to the conclusion that,
in general, the macroscopic potential energy demnsity, U, is a result
of the combined contributions of plasma fluctuations (which is équiva—
lent to elastic multiparticle collisions), elastic two-particle collisions,
the loss of particle discreteness, and a redefinition of the plasma

cell, dx, in the process of making the macroscopic approximation.

3.5 Discussion

The principal contributions of this section verification of an
appropriate Lagrangian density in Section 3.2.3 and Hamiltonian density
in Section 3.3.2 for the macroscopic plaéma model, including a pressure
tensor, heat conduction, and elastic particle collisions., In Section 3.3.2,
it was shown to he necassary to introduce a macroscopic potential energy

density U (= Tr P+ 97 +Q). In order to obtain the Hamiltonian demsity,
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it was necessary to modify the conventional Legendre transformation to
conform to the dual role of the generalized variables, Low's Lagrangian
{Low, 1958) shares the same property:; the modified Legendre transforma-
tion was used successfully to derive a corresponding Hamiltonian in
Section 3.3.6. The modified form of the Hamilton equations and Poisson
brackets presented in Sections 32.3.3 and 3.3.4% may have further interesting
implications in the canonical formulation of plasma dynamics,

The plasma model used in this section is, of course, a macroscopie
approximation to the microscopic model described by the Boltzmann
equation, or the Vlasov equation when collisions are negligible, The
Euler-Lagrange equations, (3.26) and (3.46), consequently have a one-
to-one corréspondence with those of the Low Lagrangian. The continuity
of particles in phase space, QE&X)» is used by Low to constrain the
variation with respect to the particle trajectory,yi (fo,zb,t), while
here the first (particle continuity) and third (heat balance) moment
equations are used to constrain the variations with respect to the
plasma macroscopic cell trajectory, 'Eﬁéo,t). That only two moment
equations are sufficient here does not imply that the mathematical system
is closed at the second order moment equation. What we have done is to
apply Hamilton's prineciple to a mathematically open system of equations:
the Maxwell equations, and the moment equations, The latter are not
truncated, since 4 appears in the heat flow equation, and can only be
obtained by use of higher order moment equations. In practice, trunca-
tion will be accomplished by making some arbitrary assumption about q;
typically ﬂ = 0,

Whenever the scale length of variation of the macroscopic quantities

becomes comparable with the mean particle spacing, the results presented
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in this section for the macroscopic model becomes guestionable, In addi-
tion, the assumption of elastic collisions neglects excitation, ioniza-
tion, and recombination phenomena, and electromagnetic radiation
associated with charged particle collisions (bremsstrahlung). Never-
theless, the variational principle developed here is appropriate to a
multicomponent plasma, including neutral components,

In later sections, we shall apply our results to a number of plasma
problems involving perturbation expansions, While these are straight-
forward for ,ED K?nd n (Newcomb, 1962), difficulty arises in connection
with the term Tr EVE + v '3, in f. Inspection of the heat flow egua-
tion in (3.29), reveals that it is not self-consistent: even with an
explicit form given for C, we have to solve for all of the elements of
_E as weil as the components of ¢q; these depend on higher-order moment
equations.l Even when truncation at a specified moment of the Boltzmann
equation is assumed, the heat flow equation is not generally equivalent
to some constant of motion for a particle species, For the case in which
q and C are neglected, approximate expressions for 'E in terms of
the perturbation in'fﬁ are generally impossible to derive mathematically
(see Section 4.2.2). It is not ;ﬁrprising that only problems in- which
colligions between different particle species are neglected, and adiabatic
processes are assumed to occur with either a scalar or axisymmetric
pressure, have been successfﬁlly studied in terms of perturbation expan-

sions. Such problems form the subject of Section k.
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4, THREE-WAVE INTERACTIONS: THEORY

4.1 1Introduction

In this section, we shall show how the macroscopic Lagrangian ob-
tained in Section 3 can be applied to the description of nonlinear
wave-wave interactions in homogeneous plasmas, After developing a
perturbation expansion of the Lagrangian, the method of averaged
Lagrangians will be employed to derive general coupled mode equations.
In Section 2, these equations will be specialized to a number of cases
involving parametric amplification of ion-acoustic waves for which
experimental data are available,

The use of Lagrangians in describing nonlinear wave phenomena
was considered by Sturrock in 1961. He showed that in a conservative
distributed system the time-.averaged Poincare invariants, which he
later extended to the casé of field variables (Sturrock, 1962), are
equivalent to power-balance relations of the type well-known to electri-
cal engineers as "Manley-Rowe relations” (Penfield, 1960}, These results
were extended by Whitham (1965) who averaged the Lagrangian in such a
way as to remove rapidly varying terms, but conserve the slow variations
in amplitude; frequency, and wave vector characteristic of a wave train
in a weakly nonlinear medium, Vedenov and Rudakov {1065) used this
approach to describe the interaction between ion-acoustic and Langmuir
waves in a plasma. Using Low's Lagrangian (Lew, 1958) and its pertur-
bation approximation, several cases were examined by Suramlishvili,
who derived the wave coupling coefficients for interactions between langmuir
and ion-acoustic waves (Suramlishvili, 1964), between one transverse

and two longitudinal waves (Suramlishvili, 1965), between Alfvén and
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whistler waves (Suramlishvili, 1967), between Alfvén and ion-acoustic
waves (Suramlishvili, 1970), and among magnetoacoustic waves
(Suramlishvili, 19%1). A variety of general results have heen established
by Galloway (1972) and Dysthe (1974#), using the averaged Lagrangian -
method. In particular, the former démonstrated that the energy conservation
equation may be used to derive the Manley-Rowe relations, and the

coupled mode equations describing wave-wave interactions., He has also
shown that the wave energy and energy fqu follow directly from the

eﬁergy and energy flux terms quadratic in the perturbations, while the
nonlinear wave coupling coefficient follows directly fram the term in

the Lagrangian cubic in the perturbations. Similar general results were
_employed by éoyd and Turner {1972b), who used Low's Lagrangian to examine
the generation of longitudinal plasma waves by two high fxequenéy electro-
magnetic wavesg in a warm field—free plasma, and the interaction of

three electromagnetic waves in a cold magnetized plasma, This approach
will be followed in Section L. 3.

Generalizations of the averaged Lagrangian method to nonlinear plasma
phenomena other than wave-wave interactions have been made. Using a
hydromagnetic Lagrangian derived by Newcomb (1962), Dewar has shown that
the interaections between the wave znd the slowly varying background
plasma may be derived by use of Hamilton's principle (Dewar, 1970).
Dougherty (1970) has obtained ray tracing and coupled mode equations, and
demonstirated the conservation of wave action in a relativistically
covariant formulation. Four—waye interactions, self-action effects, and
sideband decay phenomena have been treated in the paper by Dysthe {197h)

men tioned above, Derivations of the wave kinetic equation have bheen
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supplied by Suramlishvili {1964; 1965) and Galloway (1972); the latter
has also provided a description of quasilinear wave-particle inter-
action, A Lagrangian theory for nonlinear wave-packets propagating in

a collisionless plasma has been developed by Dewar (1972} which deseribes
the nonlinear frequency shift, Landau damping, and modulational sideband
instabilities.

It will be clear from the foregoing remarks that the averaged
Lagrangian method has been utilized to discuss many of the significant
nonlinear phenamena occurring in plasmas. It has the merits of concise-—
ness and efficiency in the analysis,.and gives considerable insight

into the physical mechanisms involved,

4,2 Perturbation Approximations to L

Prior to its use in Section 4.3, we shall expand the Lagrangian,
(3.22), in terms of perturbations in the generalized variables, x, @

and A, up to the third order. Similar to the well-known approach for
the macroscopic Lagrangian (Newcomb, 1962), the perturbations in =,

\'i

o and Tr P/2 + V+Q will be considered as due only to those in the

generalized variables, Denoting the perturbed and unperturbed Lagrangians

by L° and L, respectively, we write

L'=L+L1+L2+L3+..., Li‘—'jdx-ﬂ- ’ (k.1)
v

where. I, denotes the Lagrangian ith order in perturbations. The qua-

i

dratic Lagrangian, L will provide the first order equations that

2}
determine the linear wave properties, and the cubic Lagrangian, L3, will

lead directly to the nonlinear coupling coefficients among the waves.
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4.,2.,1 Definition of Perturbations

The perturbations in the generalized variables are defined as,

’

X ‘—'5""5(35;13) 3 ‘P'=°P+ ¢ s A =£+'&l P | (4.2)

where (X, %, A) and (52 9. éi) are the unperturbed and perturbation
variables, respectively. Figure 4.1 illustrates the definition of '5,.
which is analogous to the particle displacement vector defined by Sturrock
(1958a)‘and Low (1958}, and the macroscopic cell displacement vector
defined by Newcomb (1962), The gquantities (¥, A) and (qﬁ,‘él) are
considered as functions of the Eulerian coordinates (f?t), consistent
with their dual roles discussed in Sections 3.1 and 3.2.1.

The perturbed Lagrangian differs from. the unperturbed Lagrangian
(3.22) due to two factors: first, the presence of E, ¢, and A, at
a given x, and second, the use of the integration variable 45' rather

than x. Thus the perturbed Lagrangian may be written as

’ m . s 2 1 ” - 2 , > ”, 0 B
R LTI PNV R It

where the summation applies to the particle species. 1In (h.3), and what
follows, primed and unprimed quantities are functions of ‘zﬁ and x,
respeétively, uhless otherwise noted,

Imposing the condition that the particlés are conserved in the

process of applying perturbations, implies that,‘
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Figure 4.1 The definition of perturbation £ in the macroscopic

plasma cell position from x to ’:5'. The perturba-
tion is performed in such a way that the number of
particles of a species in the cell is fixed. The
perturbed and unperturbed cell trajectories are

denoted as ——— and -----—- » respectively. The cell
velocities before and after perturbation are denoted

by v (xt) and X.];(.?S':t): respectively. The velocity
of the cell that is at (x,t) after perturbation is

denoted by ED(EJ t).
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ndx = n'dx” , ' (4.0)

~

- L4 -
while the Jacobian, J, of the transformation from x to x 1is

.
dx
Ll

&

The integral in (4.3) can consequently be written in terms of an

X~-integration as
~
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4,2,2 Expansions of 25’ n’, and Bﬁ

s ”»

The terms that involve v/, J, ©’, A%, E

D , and B’ are easily expanded

by the usé of (4.2), (4.4), and {4.5), and the Taylor series expansions
at x. However, expansion of the terms, Trrg'/2-+ v tgf, in (4.6)

introduces considerable difficulty. We shall confine ourselves to the
cagse of scalar pressure and adiabatic processes =atisfying the equation

/
of state

LA n—’Y P=2§__P (L.7)
P - 2 ~ ij > -?

for each particle species, with VY being the adiabatic index,
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Expansion of zé: Taking the time derivative of the first expression

of (4.2), we obtain
v = XD-!- £ , (4.8)

where é denotes dgtx(zb,t),t]/dt. Then the nonlocal expansion of

36 is seen to be,

o
\
=]
il
1
4
=
N2

= + +
l‘?t) D * NS + MLe X.L'_J) ses (4.10)

it can be shown by Taylor series expansion of zﬁ(g',t} at x that
i
1 i
v .+ S (E-V .
i = N1 Z 5T 8V Y (k.11)

=1

As a result, we have

V.. = - -v'+%55;vw *gevET L (h12)

Expansion of n’:; Combination of (4.4) and (4.5) gives the particle

conservation law along £ as (Newcomb, 1962)

—~

n’J: n - (u.ls)
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With the Jacobian, J, expressed in its exact expansion,

J=1+ v-5+§[(\7-g) —VE-V’S]+ -EE s
g
= =% (v- )3-%— (v-g)(vw:v_g_) + % VE:(VE-VE) , (4.10)
the nonlocal expansion of n” becomes
n"=n+ n, + n2‘+ n3 ooy

n, = -nv-g n

|

2:‘

[(v.5)2+ vg:vg] )
T D

By use of a relation between n; and n;, analogous to {l,11), the local

then takes the form

3%
£33
expansion of n’

ins| L2 L3 et

Ny =Vl L mpp =gy TH(ER) (+.18)

The results of (4,16) agree with Sturrock's generalization of the

Lagrange expansion in the form (Sturrock; 1960b)

i
: g_lz .
M=o Vi e V(8 e féjn)(k,a

Il
[
-
v
L
=
it

1,2,....) s {(h.17)

while n .= and n , have been derived by Newcomb (1962).
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Expansion of P”: The nonlocal expansion of P” can be obtained by

substituting (%.15) and the second expression of (4.14) in the first

expression of (4.,7),

rd
= + + ...
P P+ Py + Pyt Py ,

P, = YP(v-8) , P, = -;—' P[\'(V '§)2+ V€=V§:l ’

¢
{

2
3 1 .
p3 = —‘yP[g— (v-g) + % (v-g)(vg;vg) + 3 \?5;(&75- ,_5}:]' . {4.18)

By use of a relation between Pi and PLi analogous to (h.ll), we obtain

from (4.18),

2
P = PB—. (v-5)2+ ;f VE:VE + y’g-\:?(v-g)]

L2
+ [5- VE + y(V -5)5] oVP+%§§:VVP . (h.19)
Because v and D will not be needed to derive the second

~L3’ L3’ L3
order expansions of the perturbed force law (3.46) and Maxwell's equations

(3.26), these local expansions of v, n’, and P’ were not given
2 ~D 2

in (4.12), (%.16), and (4.19). The nonlocal expansions, ¥3s Dy, and

P;; however, are included in (4.9}, (4.15), and (4.18) because they will

be used in deriving L

3
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k,2.3 Expansion of the Lagrangian
The expressions for the £, of (%.1) can be obtained by substitution
of {4.,8), (4,14), (4.18), and the second expression of (L,7) in (4.6).

Then, Tor the unperturbed lagrangian density, we have
€ E 2
L= [E nv2 B qri((P-v'A)]+—-—o B s (%.20)

(=
where the term P/(Y-1) 1is a result of generalization from P/(? - q
by replacing 5/3 by ¥ ( Newcomb, 1962). For the perturbation Lagrangian
densities, we have after using integration by parts,

5y B Breg- an(e, + §r00- Ba) + anipe(hy ¢ 2] ¢ eEem - mem,

£, =Z ;% né,a - g [{v—1)('v-5)2 + vg:vg] - qn(g-mpl + %gg:jgcp)

1 - ofy. By
ranfue (2o, + & azvm) ¢ Efa v gw)] e -5

)2+ T (vegy(vg:vg) + % vg:(vg-vg)}

'
[

I
g,
g
—

2
i
g
\
~
<
v

+ qn[XD-(% E,E:Wij_ + %EEE’W%) + g-(E-V£1 + %EE:VV&)]} . {k.21)

. \\I
The Euler-lagrange equations of L, from £ of {4.20), with respect to

X, A, and @, are the unperturbed force law and Maxwell's equations,
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nmiD+ 9P - qn{E+ v_x B) = 0O s

E
- ': ol = e Vo - = - .
™ Vx B € 3t anX.D o, oV E Z gn = O (4,22)

Use of these shows that L, from L, of (4.21), is identically zero.

The Euler-Lagrange equations of L,, from {, of (#.21), form the

system of linear equations in §, Al, and $1, describing wave propagation.

We shall not derive them at this point, but consider the Euler-Lagrange

equations resulting from variation of L2 + L3, describing nonlinear
wave-wave interactions,
Variation in ¢1: Taking the variation of L, + L3 with respect
[
to wl yields
1
eV "E D a [v-(ntz) -2 vw(n@g)] -0 . (k.23)

Local expansion of the second expression of (3.20), and use of the last

expression of (4.22), gives

L4 - = ll-
V" B Z:q(nL1+ nLE) o . (4, 2k)
By use of (4,16}, it is easy to demonstrate that (4.23) and (4,2t} are
identical,

Variation in Al: Taking the variation of L2 + L3 with respect

to ﬂl vields

OE ) .
':TO-VXE:L'EO 'a?t_l —Eq[n’%—v-(n%)—v-(ngg)+%VV:(nESxD)]zO . (k.25
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Local expansion of the first expression of (3.26L and use of the second

expression of (4.24), gives

1 °E)

el - — - + + =
Uy VXBy) - € 3E Eq(nXLl ot Wio T i nLPf‘lD) 0. (4.26)

Use of (4,12) and (%.16) shows that (%.25) and (4.26) are identical.

Variation in €: Taking the variation of L.+ L with respect to

2 3

£ yields

m.né—- (y-1)Vp ¥ £~ VE » VP4 YP[(Y-l)(V-E)V(V'E) + v(vg:vg) + vg-v(v-g)]

2 VP{(Y~1)(V'§)2+ vg:vg]-r (Y-1)(V+E)VE+VP + VE-VE-VP

+

- qn(’gl + E-VN + fY..D X ’51 - ,S_,‘VE % ,Y_‘D + E X E)
1 1 .
- anf gooE, + £ ggivve- (,E'V!iﬁ 3 SSNVE) Xy (51+ g-vg) xgl-0 . (wen)

The locai expansion of (3.46) at X, with 7.P replaced by VP,
does not agree with (4,27). The discrepancy occurs because the former
is inconsistent with the nonlocal expansion of L° of (4.3). The
appropriate expansion of the force law must be constrained by the particle

conservation law, i.e. by comparing the first expression of (4,22) with

the force law

dlré
J[mIl a?""*‘ V'P"__ qn’(E'-bXJ;XE')] = 0 ) (LL'EB)
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which describes the same cell of particles in its perturbed motion,

The nonlocal expansion of (4.,28) is

mn:é-% vp[v -54-% {v-g)a —% (vg:vg)_

1 L] 2 1 . - . l . |
+ [1+ VeE+ S (v 5) -3 (vg,vs)] (VPL1+5 VVP+ VP, E'VVP L F 5 gg.vvvp)

f
U
<]
>

. * l - - =
- qn(£1+§, VE+ E*VE,*+ 5 EE'WE) q“(5x§,+,‘inx.§,1 2TVBX Y,

o=

LT Y TR IR L) YA (1.29)

where {4.8), (L4.14), (4.15), and the first expression of {4.22) have been
used., Introduction of (U4,19) establishes that (4.28) and (4.29) are

identical, A similar force law expansion is examined in Appendix B,

4.3 Nonlinear Wave Coupling Coefficients

We shall now use L2-+ L3 to obtain the coupling coefficients for

waves in a homogeneous, stationary, two-component magnetoplasma. The

general expression will be derived by the averaged-Lagrangian technique,

k,3.1 Averaged Lagrangian

It is convenient to introduce the normalized quantities

m P 1/2
o = ni i v = s - A a = ?E
" nm 2 s 24 — "Ds ? ~ T mom ’
e e nmece pe e
8 s
wpe e e
Es e 56 ? ¢ = 2 ¢1 ’ 4= mc é& ?
m ¢ e
e
w c mpe
Q=g— » K==k , X=-Fx , T=o.t , (430
pe pe



where the subscript s denotes electrons or ions; &be is the eleciron
plasma frequency, ¢ 1is the free space speed of light, and ADs is the
Debye length normalized against c/mpe. Then £2 and £3 from (4,21)

may be written as

A . .
1 =+ 2 i 2 2 . __]; . o
+lt2_z§v2(v,c )2_.;. +l&.(c XQ)—QV'C
2 e 2 e ~e e - 2 Ba “Ea 2in
1 c12 1 2
+-§|V§+a ‘§IVXG| ,

3= Ovig[;}" (78)(%,;:7%6,) - 5 (E_Yixv.ncai}?)] + 6L 5

Ye

‘Y ‘ .
v P52 (7 (9 - 52 (2v (v )3 - gumeh g6 e s (hs)

where the values of £2 and £3 have been normalized against nemecg;
the pressure terms have been reduced from their counterparts. in (L4,21)
by integration by parts, and we have assumed the background charge to be

neutral (qini =en, , q, = -e) and the dc V?& and Wp to he zero,

e

The averaged forms of J[f. and £3 may bhe obtained using the Fourier

2
transformation
£(XT) = ( 1)46}5_{@ (K Q)exp (P -K-X) (4.32)
2 -

i

where Ee(E,Q), K, and ()} can vary slowly with the normalized space
and time coordinates, X and T, due to weak nonlinear wave-wave inter-

action, If the scales of these slow variations, AX and AT, satisfy
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ATl s>, [axt (kK| s> (4.33)

then we have (Schiff, 1970)

dx I dT exp i[(Q—Q')T—(E‘FIE,)'AXJ]}“(EH)h 8(0-07) 8(E~K") . {34

~

AX AT

~

The action integral of (4.31),
e fefes iz (.39)

can be rewritten by use of (4,32) and (4.34). For 1 we have

2.’

2 Y,

1(2) Q 2 'i_2 .2 X ] ¥
Moy =c[-2- €15 v, |5~1|J+ 1060 -5 96, (6 x 0,0+ 18(k-g)

2 Y .
e(2) 0 2 ‘e 2 , 2 i X _ ¥
AE:Q 2 |,.§,e| _E__Ve IE«-eI —igmew * 2 Qwe (rgex—@c) ié(Er&:) 4
F(2) 1 2 1 .2, .2
Mg =% ke - ag® -1, (4.3

' *
where the Coulomb gauge (ved = 0), and the symmetry, ‘Ee(—K,~Q)=i£e(K,Q),

have been assumed. The latter reflects the requirement that EE(X,T)

be reai,and has also been applied to £.» 3 and (.

~L

To reduce 13 to its simplest form, it will be necessary to use the
properties of linear waves, which can be obtained from 12. We shall

therefore establish them before proceeding further,
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4.3.2 Linear Waves

*
By taking the variations of I, with respect to é%(ﬁbﬂ) and

*
d (X,Q), we obtain the following linear equations

0[02;, - yiviz 5(5-51)]- iQg+ 1K® + igg, xQ, =0 ,

2 2 s o _
0l = Voo K(E:L) + 400 - 3KE - 106 x g =0
K2£+ (ke - Qa) - iQ(’gi -,ge) =0 . : (h.37)‘

By introducing the normalized electric field,

qu

&= (Kt - 00) = , | (4.38)

W mec
pe e

we can obtain from {L4.37)

~1

iE-¢ if, X8 e L1yt
te- 7 s AT E ) LmME s, gemg¥E . (X

Here, the polarization tensor, Mﬁ, is defined in a Cartesian coordinate

system with E% in the positive z-direction. Its elements are given by

s 1 [e2 2f 2 2) v =—1——02-vv2(1<2+x2)]
Mxx E; {9 - YSVS (KY+ e ] ’ yy As ' ss8 \x Z ’
s 1_[92 -y V 2(K2+ KE)— Q 2] )
zZ ﬁs E8 \x ¥ s

2
ik [
s g% 1 2 z s .
= — KK + —|f -
May T Myx T 2 ‘E{SVS (XY Q ) ,1m5:| ’

B 5 o )
v VK iK . Y.VE 1K QO
e oy o5 Z(Kx— S) , M oawS =S5 K+ ,  (L4.40)

[l

=
Il

1
=

y
QO VE Zy &S Q

rs
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where * denotes the complex conjugate, and C%, Qi’ and AS are defined

as

q
C 2{.2 2.2 2f 2 2
Q=-0 , ==, a_=0 (Q —'YSVSK)-QS(Q -vsvsKi) o (B

Using (4.39) in (4.37) yields the familiar results (Allis, Buchsbaum,

and Bers, 1963)

K
- EF— ’ ﬂ:'ﬁ' B (“—.L?-g)
where ,ﬁ is the plasma equivalent permittivity tensor. Nontrivial solutions
for (4.42) exist when K and @ satisfy the dispersion relation,
det D=0 (4.43)

For these values of (YK}, the electric field polarization vector is

(D

- |
Dnyxz_~nyDyz) ? (Dxnyz Dnyxz) : )[ - (B

b -D D
Xy yX XX vy

We shall postpone discussion of the various linear waves described by {4.43)
until Section 5, where Langmuir, ion-acoustic, and whistler waves will be

treated in applications of the results to be derived in this section.

4.3.3 Wave Coupling Coefficients

We now return to the derivation of wave coupling coefficients from
£3. We first separate {K,Q) into its component wave amplitudes and

unit polarizations,
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g0 = Ye(X ey | (4.45)
DU

where E;Qg,T) has slow X- and T-dependences because of nonlinear

]

wave interaction. Use of (4.45}, (%4.32), (L.34), (4.35), and (4.39),

in (L.31) then gives

) -’ " '
I3 = 3 S d'EdE ClE eL’e AKK %" »
S

s . 8

Ak k" = z: TS[AT (,E’AIE ’E”) A (,I_{,JE':E”)] s

~ e

s 'YS v ,
AT( ,,15',5”) = VS(K'M -e) = (K‘-M ‘e )(K”-M -e')

|
0\1 -
n
——
i
2
S ———
—
]
=
? -
» .
b T
¥
v
——
W
e
16
~——
| S
-

1 1 7 -, ) " ”
-3 (B D) xee)(x Y o) (1.46)

-,

where T., T, e, and &° are given by
PR (L.47)

2
Ti=1/0 ) T = -1 3 e = e

In 13, the integration, S, over K, Ef; and'E” is restricted by the.
. ‘B
synchronism conditions,

£+ 5.‘4_ E” - O , Q(E) + Q;(Ea) + Oﬂ(}sﬂ) - O i (J-l-_h.g)
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The summation in AKK,Kﬂ is assumed to cover all permutations of its

—

following terms with respect to K, E', and E”. By use of the frequency
synchronism condition of (4.48), we find that the second term of
Ai{K,E'{Ef), when summed over all permutations, will make zero contripu-

tion to AKK gt

It is noted that AKK'K” is composed of two types of nonlinear inter-

action energies. One is associated with the thermal motion of the charged

S », = »
particles, represented by AT(E%E LE”)' The other, AI(E?E %E”)
#”
[: Q”/eaMS -e”)<K°M e')/b&, is the field-particle interaction contri-

~ [V [

s,
bution associated with the current, charge density, and electric and
magnetic fields. It consists of those terms in £3 of (k.31) that are
multiplied by the unpertugbed charge density, qsns.
The quantity (AKK»KH + ¢.c.), with c.c. representing the complex
conjugate, can he inézzg;;fed as the rate of energy transfer to the (75)
wave due to nonlinear interaction between the ,E' and 'E” waves of unit
amplitude in the normalized electric field (Galloway, 1972). Because of

this energy transfer, the energy of a single wave is no longer conserved,

as in the linear case, Instead,we have (Galloway and Kim, 1971)

1{3 ) .ot -
—_— + = ® = ol -
Q(ﬁ 345 8x EE) 5 dflf, drIE. ee’e AKK K ’ ()'I' 1‘9)
S P I
where S signifies that the synchronism conditions of (4,48) are satisfied.

The wave energy and energy flux densities, HK and EK’ can be obtained

~ o~

by applying the Legendre transformation to £2, but retaining the originail
dependent variahbles ’gs, %, and {4 , before applying the averaging process,

They are given by,
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H'K = |6Kl QSK ’ 3:K = K ’
2 2
U 1fir} i ii i (2 e |2, 'ee e |2, (1) ~
Qﬂx“‘a(e%‘z+2|E'E's)+_zﬂf.+25%‘3*2 e
~ 20
Y Y K *
— L] e
uv i 2 i i® * e 2 e e* ¥\ LA -
W= 55 Vi(,‘i,“il 3)(1‘5 ‘3)’“2 Ve(,ff,'ﬁ :i)(ﬁ'{, 3)+--————292 ’ (%.50)

with ¥ denoting the complex conjugate. When only three discrete waves
are involved, the right-hand side of (4.49) reduces to a summation symmetric

in X, K7, and K. We have, by substitution of (4.50),

~

o a3 107 - e e ) 1T

a a o 2 s ) ’

The first two equations are the Manley-Rowe relations expressing the
conservation of wave action, ﬂK]&IE, in three-wave interaction
{ Louisell, 1960). -

The coupled mode egquation can be obtained from (4.“1) by cancelling

* % *
g, &, and &° in (L4, 51),
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V(o \Y 8 v wW* U

3 (ﬁ * lfs ’ ah}g) 85 = Vpsi E::Il ep 2

W /d . a8 w VU

:]i (g'f * P.'i -B—X') E;’:'L = Cpsi &s E«p ) - (L;-52)

where U, V, and W denote the waves, and the following substitutions have

been assumed,

»,

uvw u'vw

U
=C P = ” = = -
psi = ke’ T Mgxk’ 0 Sk~ S o =0
P U U’ v .U’
SR K=K K=K, gecdy o, M=l s (453)

with the last two relations following from (4.50). The Subscripts p, s,
and i denote the pump, signal, and idler waves, respectively, This
nomenclature is commonly used in describing parametric amplifiers, where
& large amplitude pump wave, 8§, is applied to amplify the signal and

idler waves (Louisell, 1960),.

4.4 Parametric Wave Amplification

In Section %.3 we have derived the general coupled mode equations for
nonlinear three-wave interaction under three important assumptions: first,
that the waves are undamped ; second, that the background plasma is homo-
geneous, and third, that there are no additicnal nonlinear wave processes,
such as wave-particle interaction. We shall now consider spatial solutions

to the coupled mode equations, and assess the effects of relaxing some of
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these assumptions. In particular, some results with damping taken into
account will be considered. They will be of use in Section > for com-

paring theoretical predictions with experiments on parﬁmetric amplification,

4 4,1 Parametric Amplification Without Wave Damping

The solutions of the coupled mode equations in (4.52) are well-known,
and will be briefly discussed in this subsection. We proceed with the

assumption of a large pump wave amplitude,

|8p| S>> |ES|, |€i|f In this case, Ep can be considered as 2 constant

because the right-hand side of the first expression of (#.“2)—15 now
negligible. The remaining two equations become linear in .&S and Ei.
Their solutions are then'§ub;egf to fhg.instabiiity criteria well-known
in the linear wave theory concerning absolute { temporal) and convective
(spatial) growth (Sturrocﬁ, 1958b; Briggs, 1964; Derfler, 1967). This type
of analysis has been extended by Harker and Crawfor? (1969a) and ‘
Van Hoven {1971). 1In particular, they have shown th;t, (a) if 39 >0
and “s“i > 0, &s and &i are convectively unstable with both
temporal and spatial growth possible, (b) if 3,9; > 0 and Uy < 0,
they become absclutely unstable, and evanescent in space but amplified
in time, (c¢) if A:%ﬂi < 0 and 1%“1 > 0, they are evanescent in time
but amplified in space, and (d) if 1,9; < 0 and usni < 0, they vary
like beat waves and no persistent amplification in space or'time is
possible. Cases (a) and (e¢), in which the signal and idler wavé group
velocities are in the same direction (Usﬁi > 0}, are usually termed:

co-flow or forward scatter, while Cases {b) and (d), in which the signal
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and idler wave group velocitles have opposite directions (usui < 0),
are usually termed contra-flow or back scatter., The distinction
betwéen the two types of parametric amplification is illustrated in
figures 4.2(a) and 4.2(b}.

The temporal (assuming space-independence) and spatial (assuming
time-independence) parametric amplification rates, FO and KO’

respectively, are given by (Louisell, 1960},

lc_|le|
/2 psi P
To = Uy )" = —=29m
kﬂsﬂi)

(4.54)

These expressions can be obtained from the last two relations of (4.52)
by assuming that €_ and g, vary as exp(TbT) or exp(KOZ) in a one-
dimensional approximation in the Z-direction, Since imaginary fb or
KO amounts to a small nonlinear frequency or wavenumber shift, respectively,
for the signal and idler, the results of (4.54) are seen to be consistent
with those by Harker (1969) and Van Hoven (1971).

If we assume that the initial (or boundary) value of ¢, 1is zero,
(4.54) breaks down because £, can no longer be an exponential function
in T (or Z). We then find from the right-hand side of the second expression
of (4,52} that the initial slope of €, in T {or Z} is zero. Also,
from the last expression of (h.52), the starting behavior of Ei is seen

to be T .2 (or KOiT), with

*
c € (0)e (0
L AL
0i T 1Moi Si *

When ]eil becomes comparable to [&Sl due to this linear growth, the

exponential growth of (4.54) is then applicable. The spatial behavior
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Figure 4.2

~v

( b)

The distinction between {a) the co-flow {forward scatter)
and (b) the contra-flow {back scatter) cases of parametric
amplification, The solid lines indicate the dispersion
curves near the (K,(?) of the pump, signal, and idler waves.
In the co-flow case, the group velocities (U = d{)/dK) of
the signal and idler have the same sign, while in the

contra-flow case, their group velocities have opposite signs,
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of & and £€_ in each of the above mentioned four cases were presented
8 i

in a swmmary paper by Barnes (1964).

|3p|'~ I&sl “‘|€115 In the case of parametric growth in ES and

Ei, the results of (4.54) and (4.%55) can be considered accurate only near
the boundary where, or soon after the initial time when, the pump wave is
being injected. These results break down as soon as IESI and Iﬂil
become comparable to Iﬂpl. In this case, the temporal solutions to

(4.52) must be put in terms of elliptic integrals involving the wave

2 2

actions § [S |2, 9 [& I » and 3 E.| . The solutions of these wave

' p - it i
actions, when all the §'s have the same sign, are illustrated in
figure 4.3 (see for example, Sagdeev and Galeev, 1969). Several features
of this figure should be noted: first, that |5pl can no longer be con-
sidered as a constant; second, that the interaction process is reversible
and has a nonlinear period: Tn’ which can be shown to be roughly propor-

tional to the inverse of the maximum value of [epl, and third, that the

Manley-Rowe type of wave action conservation laws, derivable from (4.51),
2 2 2 2
%pl&pl - SSIES’ = constant SSIESI + Si‘&if =constant , (4,56)

are satisfied., Finally, it should be noted that if all the 1U's

have the same sign, the spatial solutions in this case are similar to the
temporal solutions shown in figure h.3. To complete the analogy, it is
only necessary to replace T and the Slele's in figure 4,3 by Z

and the corresponding ﬂul&lg’s, respectively. Also, {(4.56) becomes,

2 2 2
.‘Jp‘IJpIE«p, - Els’uslssl = constant :]S‘US,&S| + f]i‘lji’EiI2=constant , (h.57)

which is the Manley-Rowe type of power-balance formula (Penfield, 1960).
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Figure 4.3 The solutions to (L.52) when |8p|, lE',s[, and ‘Ei[ are
comparable in magnitude are in terms of the wave action,
.‘]]&|2, for temporazl behavior;and wave power transfer,
:l’u]a|2, for spatial behavior. T (or Zn) is the
interaction periodicity time (or spatial length) of

wave interaction,
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A situation in which the wave amplitudes increase to infinity in a
finite time period occurs when EE < ¢ and 95591 > 0. We then have

from (4.52),

de ag_ &
— —— =
lgpl ar = ¢ &% Gar =°¢ eisp ? Sar = °¢ Esﬁp s (158)

where C = IC .l. Now &p’ SS, and ﬁi can be made real in value by

psi
choosing n/2 as the phase angle difference between the pump and the

signal and idler waves in (4.52) (Davidson, 1972). From (%.58), we see
that, whenever Bb, Es, and Ei simultaneocusly have the same sign, the

wave amplitudes grow without bound. As illustrated in figure h.h, we

have for the special case Eb =&, =28 (Davidson, 1972),

C ap(o)

&p(T),= ep(O)/ 1 - T (4.59)

X

which becomes infinite in a time period T;xp = lﬂpl/C Gp(O). This is the
simplest example of the so-called explosive instability (see for example,
Coppi, Rosenbluth, and Sudan, 1969),

This infinitely large amplitude cannot occur in practice, however,
because of the limiting effects of linear wave damping, and other nonlinear
wave procesSses, which are omitted in the foregoing model of a wave-
triplet. On the other hand, the spatial solutions to (4,52}, when
fghp < 0, and f%ﬂs, ﬂiui > 0, have a similar form to the temporal
solutions shown in figure 4.4, with the explosive instability length
being Zexp = Iﬂﬁupl/c ep(O). In the next subsection, it will be shown
that the inclusion of weak wave damping will drastically change the

behavior of Ep, E’s’ and é’,i from that briefly indicated above,
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The behavior of |8b| in the explosive instability of
three-wave interaction, occurring when ¢ is different
in sign from gs and ﬂi for their temporal solutions,

is different i i from and -
or ﬂp“p i in sign 95"3 3£Ui
for their spatial solutions.
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L. 4.2 Wave Damping

The effects of weak linear wave damping can be included phenomenclo-

gically in the coupled mode equations (L4.52) (Sj6lund and Stenflo, 1967),

X
3 3 \
a{_+q| . + T le 0o &' o (4,600
M\AT A X Yifti psi “Ys“p ° LMY
where the rp .1 represent the normalized damping rates of the pump,
297
signal, and idler. Due to the presence of Tb 5.1’ IEpl must be larger
222

than some threshold before 85 and Ei can be amplified, This threshold
field, eth’ for amplification can be obtained by setting &/3T = 0 = 3/8X in

the last two expressions of (4.60). We then obtain

1
(9. 9.7 T )"

e, = —s5-8° (4.61)

e,y

after cancelling BS and Ei. When the pump field is not far above the
threshold, we may obtain the initial parametric amplification rate for
waves propagating parallel teo 2%, in a fashion similar to that used in

obtaining (4.54) (Louisel1, 1960), as
K = ———— s (k.62)

where KO is given by (4.54); Mgy Hy» and Kt are defined by

h
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=

»

(4.63)

— [
N T ' S L ’
i
and we have assumed (u_ + u,) >> 4L(K 2 _x 2).
5 i 0 th” °

For the case of a large amplitude undamped pump wave, the spatial
Solutions for linearly damped signal and idler waves have already been
presented in the context of nonlinear optices (Bloembergen, 1965; Bobroff,
1965). The stability analysis, in line with the approach by Harker and
Crawford (1969a) and Van Hoven {1971), has been extended to this case by
Bers, Chambers, and Hawryluk (1973). Here, we wish to extend the analysis
to account for a damped pump wave, A similar problem has been studied
by Ohnuma and Hatta ({1970), and by Porkolab and Chang (1970).

By making the phase of 8p different from those of ES and E.i by

n/2 in (L4,60), we have for the one-dimensional case (Davidson, 1972),

d a .
USEE(EE'+ us)es =C aiep P v.ﬂ.(EE-+ ui)&i = C ssep s (4,64)

11

where C = IC g, &S, and {:1i are real in value, and we assume an

PSi,; P

exponentially decaying, large amplitude pump wave

e, = e Oem(-uz)  (le] > lellel) . (1.65)

Case 1, s # Bg = By = 4: The simplified case where bp = Mg = Hy =i

has been treated by Ohnuma and Hatta (1970), and a further simplification
to second harmonic generation by a large amplitude ion-acoustic wave has
been studied by them and by Litzenberger, et al, (1972). For purposes
of comparison between theory and experiment in Section 5.2.3, we shall

*
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consider solutions for parametric amplification when Hp # Hy = Mp = u.

We then have as solutions of (4.64), for the case of co-flow (figure 4.2a)

1/2
. [& (0) cosh M + & (o )(“ 51) sinh M] exp(-pZ)

e
li

Q
n

1/2
[& (0) cosh M + e, (0 )(ﬂ 7 ) sinh M] exp(-uz)

cCée (O) e (O)
= : /2
M{Z)::Mo[l— exp(—uzﬂ s MO M (n p u ” )1/2 8 p (Usui)l , (4,66)

where ES(O) and 81(0) are the values of € and &, at Z=0, and

the second expression for M. is obtained by using (4,61),

]
By evaluating d&S/dZ and d&i/dZ at Z =0, we find that Es

and £ grow in the vicinity of 2 = 0 according to (4.61) and (4.62).

For Z such that ppZ >> 1, ¢, and €, both decay by linear damping.

This behavior is illustrated in figure 4.5 and is drastically different

from that shown in figure 4,3 where damping was not included. In the simpler

theoretical model used by Ohnuma and Hatta (1970), in which M, =M, the

following assumptions were made,

g.(0) ya.\1/2
M(Z) «<1 , e (0) > (—1—) , (h,67)

where the second condition is obtained by making d&i/dZ >0 at Z =0
according to the second expression of (4.66), It then follows that e,
has its maximum value at ZO = {ng/up l-'O.T/up, a result obtained

without assuming “p = U,
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Figure 4,5

The schematic behavior of ES' and 61 according
to (4.66), where wave damping of &p, Es, and €,
has been included, When Mp = p, and under the
condition (4.67), the peak location Z, of &
becomes independent of 8p(0).
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Case 2, _ # “s # My The solutions for 85 and Si must now be
P

expressed in terms of Bessel functions (Porkolab and Chang, 1970). We
shall consider only the case where wy > 0 (Up > 0), Mg <0 (HS < 0),

and My >0 (Ui > 0), i.e. the contra-flow or back scatter case (Barnes,
1964 ; Bloembergen, 1965}, as illustrated in figure %,2b, relevant to
examples in Sections 5.3.2, 5.4.3, and 5.5.4. Under these conditions the

solutions of (4.64) for g, and & can be written as

A
g, = [cil Jv_l(x) * Cp N\_}_l(x)] exp[—(p.p+ bt “i) EJ s
- - Z
e, = [Csl I )+ C Nv(x)] exp[ (up+ b+ “1) 2] ’ (L.68)
where the quantities ¥, v, [MOI, Cil,E’ and Csl,2 are defined by
X = ,M | exp(-n Z Vo= = PR TR T]
0 ? 2Hp b s i ?
| c e (0) a()(l | )1/2
H_ 1R )
0 1/2 7 &, p g
up(lfuslﬂsuisl) th
HIM I IU Iﬂ 1/2
0 s'"s
Ci1= 72 [( uiﬂi ) NU-I(IMOI)as(O) - Nv(lMol)&i(O) ?

-

C.p = =3 ol Jv(IMO[)gi(O) - (%F—S)Viv_l(lMOI)ss(o}]

c,, - — Nv_l(lMO[)ES(O)-(%)lﬁv(lmol)&i(oh ,

-

—

mfm. | [/]u |9 \/2 1
CsE = 20 ( H:ﬂis) Jv(|M0|)Ei(O) - Jv_l([MOI)ES(O) ) (4-69)

- -
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where Jv(X} and Nv(X) are Bessel functions of the first and second

kinds (Abramovitz and Stegun, 196%5).

Simplifications of (4.68) are possible under various conditions of

interest for Section 5;

¥ << 1: In this case, 3i and Es reduce to

M, %X, Im | flu_[3_\1/2
- 1 0 1i 0 .
e, = Ei(O)LH' ey gvy ol M gvacy fuissis Sl“h[(v'l)“pz]

A
X exp [—(up o ¥ “1)'2'] P
u, |® M, | flu_[9 \/2
e =g (0)|x, -2 + e (0) —2 S_5) sinh(w_2)
s S 1s Eviv-ljxls i v 1&51 p

X exp'[—(up Topg ot ui) g] ;, (4.70)

where and Xls are defined by

X131

Xli = exp[(v-l)“‘pz] bl X].S = exp( UMPZ) . (4'71)

v => %: We now have for 6i and ES the expressions

Fai(o) y v=-1/2
i | eO (f:i) - 8S(O)XE’J'. exp _Hiz)

(
1 eOIMOIE w1 v-3/2
+ Lgs(o)XEi - 81(0) L ( . ) ] exp[—(up + us)z] 5

Ay
fe (0 Vv=1/2
8s 2“ :O (;gi) - Ei(O)XE;]exp(—usZ)
e (0) BECNUNE V173 -
+ _”i'v_" Xpg ~ €5(0) Ohvo (v;l) ]exp[-(up+ui) z] , (L.72)
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where X?i and X are defined hy

as
1/2
[Mol lﬂslss Le . [MO| Itus[ﬂs ! (4.73)
¥o1 T BT\ G, » o Fas T AV \TLT ) =

and e, has been written for exp(l) = 2.718,..

X > v >>1: In this approximation, &i and BS reduce to

1]
3

~ Iru lg \]/2 - -
e, = Si(O)cos M+ ES(O){fﬁiﬁ—E sin M| ex —(H + p.) g

L \11/7 - -

(R

- u g9 \I/2 7T r Z-
g = ES(O)cos M + &i(O) ﬁﬁfﬁzg sin M exph—(us + ui) §J . (h.7h)

-

We note that,
M(Z) = [MOI [1 - exp(-upZ)] =~ IMO[upz s (4.75)

where the second expression for M(Z) is appropriate when upZ << 1. In
(4.70), (4.72), and (4.75), the quantity IMOI has been defined in (4,69),
It will be seen in Section 5 that the behavior of ES and &i according

to (4,70)-(4.75) is drastically different from that indicated in

Section 4.%,1 where linear damping is neglected.

Case 3. Noncollinear Propagation: So far we have assumed that

the group velocities are collinear. 1In preparation for Section 5.5.4,

We now consider the case when Hp, ys’ and yd are no longer collinear,

The coupled mode equations (4,64) become
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positive Z direction. Substituting
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It will be seen that, along a path with X constant, (L4.79) is equivalent
to (4.64), but with different wave coupling coefficients, Aloné an
appropfiately chosen Z-axis, where X = 0, e.g. the central plane of a
plasma slab, the form of (4.79) becomes identical to that of (%.,6%)., The
solutions, (4.68)-{4.75), become the solutions of (L4.79) when Hs, Ui, g
and H; are replaced by HSZ, uiz’ Hops Higo respebti%ely.
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4.4.3 Effects of Other Nonlinear Processes and Plasma Inhomogeneity

In addition to linear wave damping, other nonlinear wave processes
and plasma background inhomogeneity may also significantly alter the
behavior of the interacting wave-triplet., Here we shall only briefly
discuss the conditions under which the solutions of ES and Ei given

in Section 4.4.2 are still acceptable in practice.

Other Nonlinear Processes: The competing nonlinear wave processes

likely to occur in the presence of a large amplitude pump wave are

f modifications of the background plasma. While
causing them, the pump wave may have a significantly different behavior
from the exponential decay assumed in (4.65), thus rendering the solutions
for ES and Ei given in Section 4.4.2 inaccurate.

(1) Particles trapped by an electrostatic pump wave: In a collisionless

2.2 .
plasma, and assuming K Ve << 1, this process is important under the

condition {see for example, Davidson, 1972),

ekIEpl 12
Q> Q>»>Tr , O={——] = (Klep[

@w m
P €

e
) , (4.80)
where QB is the electron hounce frequency when trapped in a trough of

the pump wave, and TL is the normalized linear Landau damping rate,

L 8 2.2 2

1/2
r — (E) .—.—.-.—.-1 3 expi{- ___1 - é . (1'6'.81)
(KVe) 2KV -

It is well known that, under the condition {4.80), the electrostatic wave

decays like exp(—rLT) only for T g 1/QB, but executes modulational

oscillation when T » 1/(. This behavior is illustrated in figure L6,
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Figure 4.6 The behavior of an electrostatic pump wave amplitude under

the influence of trapped electrons (——) in a collisionless
plasma under condition {4.80). In the absence of electron-
trapping, the wave decays according to linear Landau

damping as exp(-TLT) (----).
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The results of Section 4.4.2 are therefore appropriate only for T < I/QB,
or for Z £ 1/Chhp when considering spatial evolution.

The first condition in {4.80) is necessary to restrict the size of
IEp] so that the electron density perturbation is much smaller than the
quiescent density (Davidson, 1972), and is consistent with the assumption
of weak perturbation used in Section 4.2 in approximating the lLagrangian.
The second condition in (4.80) is required to allow the trapped electrons
to make many bounces in a wave trough before they become untrapped due to
wave damping. Thersef the collisi is much larger
than TL, FE should replace FL in (4,80). Following the same reasoning,
Té ghould be replaced by the total measured pump wave damping rate fﬁ,
which may be a sum of PC and the nonlinear damping rate TNL that

accounts for all the nonlinear effects on the pump wave, We then have

from (4.80),

0, = (KIE‘,p])l/E <T, (4.82)

as the condition under which the trapped particle effects on an electro-
static pump wave are negligible.

(1i) Plasma heating: Substantial background modification in the

form of plasma heating by an incident wave can occur in a collisional
plasma due to collisional randomization of the ordered perturbation in
electron motion. It has been shown that the electron temperature, Te’
increases from its quiescent value, Tb, roughly according to

(Ginzburg, 1970),

T le |\e 1/2
e _ p _ (¢
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when 02 >> viﬁpi, with Ve being the electron-ioh and electron-neutral
energy transfer collisional frequency. When |8p|2 o &i, it is seen
that the corresponding temperature increase can be substantial, thus
changing the wave coupling coefficients and linear wave properties,
Thus, in the presence of a large amplitude pump wave, th; electron
temperature should be determined from (h.83) before using the results of

Section 4.4, 2,

(iii) Density Modificatione: Particle trapping and plasma heating

deal with the modification of the plasma background in velocity space,
Modifications in configuration space can occur when the large amplitude
wave is inhomogeneous in amplitude, as is the case in (4.65), This results
in an equivalent potential energy, @N, (normalized_to_“mepe),for‘each
charged particle (Ginzburg, 1970),

e (0)]? |
N = 5 = 02 EXP( _eupz) . ’ (H'Sh)

1
This nonlinear effect becomes important when @N is comparable with the
ayerage electron thermal energy, VEE/E. So the condition under which
. the backgrouﬁd plasma density is not significantly altered by an inhomo-
genecus large amplitude pump -wave is then,

2 2.2 :
le|® < v, (:.85)

over the plasma region where upZ ~ 1. The effects of background
inhomogeneity on the three-wave interaction process will be briefly

discussed bhelow.
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Plasma Inhomogeneity: The size of the plasma region, ALO, in whigh

nonlinear wave interaction occurs, may be limited either by boundaries
in the case of a uniform plasma, or by satisfying the synchrbnism condi-
tions (4,48} in the case of a slightly inhomogeneous nilasma,

{i) Bounded homogeneous plasma: In this case, we require

KAL, >> 1, KALy > 1, (4.86)

to see significant nonlinear wave amplification within ALO. If there
is a departure AK (= K-K-¥”) from synchronism, then the parametric

growth will be substantially unaffected only if

AK ¢ ALO <7 . {(4,87)

This conclusion may be reached by considering the exact expression for

the integral in (4,34%) (Schiff, 1970; Phelps, Van Hoven, and Rynn, 1973)

5 (AK 'ALO)
dZ exp(iAK * Z} = = sin (4,88)
L, AK 2By /7

which has the significant value of roughly unity only when (4,87) is
satisfied, Note here that we have heglected the reflection of waves from
the boundaries,

(ii) Weakly inhomogeneous background: In this case, the quantity

AK is a function of AL, where AL is the distance from the point of
perfect synchronism, Then (L4,87) can be used to determine the width,
Alb’ of the region over which synchronism is sufficiently well satisfied

for parametric amplification to occur. Assuming linear dependence of AK

on AL, we then have from (4,87)
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1/2
“)- / s AK = QAL (4,89)

/_\.LO < (&
which agrees with a result by Harker and Crawford (1970} .

4.5 Discussion

The purpose of this section has heen to apply the.maéroscopic—
Lagrangian obtained in Section 3 to the description of parametric wave
amplification phenomena in a homogeneous plasma. In Section 4.2, the
Lagrangian of .(3.22) was expanded in terms of the pertﬁrbations, 2, A,
and ¢1, in plasma cell position x and the vector and scalar potentials
ﬁ and Y. In Section h.3, the averaged Lagrangian)technique was applied
to obtain the energy densities and energy flux densities of the linear
wéves,and the noniinéar wave coupling coefficiénts. We specialized in
Section 4.4 the analysis of the three;wave coupled mode equations to
parametric amplification, and demonsfrated how to solve them in the presence
of linear wave damping. The results will be used in Section 5 to make

comparisons between theory and experiment.
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%, THREE-WAVE INTERACTIONS: APPLICATIONS

.

5.1 Intrecduction

Nonlinear wave-wave interaction represents the lowest order correc-
tion to linear plasma wave theory. It must be described and understood,
together with the phenomena of nonlinear wave-particle interactions, which
have been ignored in this thesis, before effective progress can be made
towards understanding such significant plasma problems as turbulence and
ancmalous transport (Kadomtsev, 1965). 1In view of its importance, one
would expect to find a variety of theoretical predictions for interactions
between various types of plasma waves, and a corresponding series of
experimental investigations designed to test the validity of the theory,

This desirable stage has not been reached, however, Although there
have been many analyses of wave-wave interactions, there have been few
experimentis carried out té test them rigorously. A representative sample
of the literature is given in Table 5.1. The list is not intended to be
exhaustive, but illustrative., Most of the nonlinear wave coupling
coefficients have been derived by the conventional iterative method. This
approach is conceptually simple, but generally involves greater algebraic
complexity than the Lagrangian method,

Although all of those results listed could be rederived by the
averaged Lagrangian method, by use of an appropriate Lagrangian density,
only a small number of the analyses were carried out by this method.

These may be categorized by the plasma models used.

Cold Plasma: Using the cold plasma Lagrangian, Galloway and Crawford
(1970) have obtained the coupling coefficients for transverse waves
propagating at arbitrary angles to the static magneiic field, As men-
tioned in Section h.l, a similar study has been presented by Boyd and
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Table 5.1 Some derivations of wave coupling coefficients using (a) the

averaged Lagrangian method and (b) the iterative method, with

(¢) related experimental work.

represent,

m: microscopic warm plasma,
magnetic field, we have, [ :
parallel propagation, L:

X: oblique propagation.

cold plasma,

The abbreviations used below
M: macroscopic warm plasma, and
With respect to the static
parallel propagation, -4 : quasi-
perpendicular propagation, and

With respect to the directions of the

phase velocities, we have, ® = 0: collinear waves,and @ £ O:

noncollinear waves,

Interacting Waves °

Three ion-acoustic
waves

Two electron plasma
waves and one ion-
acoustic wave

Three electron plasma
waves

4

Two whistlers and one
ion-acoustic wave

References; Theoretical Assumptions

-{®)
(b)(e)
(b)(e)

(a)
(a)
(b}
(b)
(b)

(a)
(a)

Litzenberger and Bekefi (1969); M, € = O
Ohnuma and Hatta (1970); M, @ = O

Litzenberger, Mix, and Bekefi (1972);
M, ®=0

Suramlishvili (1964); m, @ # O

Kim (1972); M, 8 = 0 '

Oraevskii and Sagdeev (1963); M, ® # O
Lee and Su (1966); M, ® £ 0

Gratzl (1971); m, @ £ O

Galloway and Kim {1971); m, ® = O
Kim {(1972); m, 4, 8 £ O

Forslund, Kindel, and Lindman (1972);
M and m, ||

Porkolab (1972); m, X, @ # O
Porkolab, Arunasalam, and Ellis (1972)
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Table 5.1 {cont.)

Interacting Waves References; Theoretical Assumptions
(ne long wavelength (a) Kim {(1972); M
ordinary wave, one L. 68) « |
electron plasma wave, (b) Nishikawa (19 8);
and one ion-acoustic (b) Lee and Su (1966); M
wave (b) Harker (1971); M
{b) Dubois and Goldman (1965); m
{p) Silin (1965); m
{(c) Stern and Tzoar (1966b)
One extraordinary (b) Porkolab {1972); m, X, @ # O

wave, one elec~

tron plasma wave,
and one ion-acoustic
wave

One cyclotron harmonic (b} Gratzi (1971); m, X, 840
wave, one or two
electron plasma waves,
and one ion-acoustic
wave

Two ion cyclotron, or (a) Suramlishvili (1970); m, X, 8#0
two Alfvén waves;
and one ion-acoustic (b) Lee and Kaw (1972); M, m, |
wave (b) Hollweg (1971); M, ||
(¢) Belcher and Davis (1971}
(c) Dubuvoi and Fedyakov {1968)
Two {or one) lower (a) Suramlishvili (1971); m, X, @ £ O
hybrid waves and .
one ion cyclotron, or (b) Kindel, Okuda, and Dawson (1972):
m, X, ®# 0

magnetosonic, wave (or
two ion-acoustic (b) Fidone (1973}); m, X, @ £ O

waves
) (b) EKarney, Bers, and Kulp (1973); M, X, @ £ 0
(¢) Hooke and Bernarbei (1972)
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Teble 5.1 (cont.)

Interacting Waves " References; Theoretical Assumptions

=2
S

Tzoar (1969); my X , @ £ O
Chang, Porkolab, and Grek (1972)
Keen and Fletcher (1971)

Two cyclotron harmonic
waves and one ion-
acoustic wave

~ N
(e} [¢]
— e

m
e’

Three electromagnetic or
right-handed circularly
polarized waves

Galloway and Crawford (1970); C, x, ® £ 0
Boyd and Turner (1972b);C, X, @ # 0

L T e T e U e M
»
S

a) Kim (1972); m, 4, € # 0
b) Harker and Crawford (1969b); C, H, @ # O
One transverse wave (a) Suramlishvili (1965); m, ® # O
and two longitudinal (a) Kim (1965); my, H-, @ £ O

(electron plasma and
ion-acoustic) waves

Two whistlers and one (a) Suramlishvili (1967); m, X, © £ O
Alfven wave (a) Harker, et al (1974) C, -, ®£0

Two circularly polarized (a) Kim (1972); m,H, 8 # O
waves and one electron
plasma wave (a) Boyd and Turner (1972b); m, & = O
{(b) Harker and Crawford (1970); M, ||
{(b) 8j5lund and Stenflo (1967); M, ||
(b) Montgomery (1965); M, ||

(b) Kim, Harker, and Crawford (1971);
my, 4, €<£0

(¢) Stern and Tzoar {1966a)

Two ordinary waves (b) Etievant, Ossakow, Ozizmir, and Su (1968);
and one extra- ¢, L, 8#£0
ordinary wave (e) Cano, Fidone, and Zanfagna (1971)

Two electromagnetic {b) Boyd and Turner (1972a); m, 1, B # O
waves and one
cyclotron harmonie
wave, O upper
hybrid wave
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Table 5.1 (cont.)

Interacting Waves References; Theoretical Assumptions
Three cyclotron (a) Kim (2972); m, L, 8 # 0
harmonic waves
(b) Harker and Crawford (1968); m, 1, @ # 0
(¢) Porkolab and Chang (1970)
(¢} Chang and Porkolab (1970)
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Turner (1972b). The excitation of AlfvénAwaves by nonlinear interaction
of whistlers in cold plasmas has been studied by Harker, Crawford, and

Fraser-Smith (1974).

Microscopic warm plasma: Using the Low Lagrangian (195 ),

Suramlishvili (1964; 1965: 1967; 1970; 19T71) has presented a series of
gtudies concerning the nonlinear interactions between electron plasma
and ion-acoustic waves, between one transverse and two 1ongitudina17
{electron plasma and ion;acoustic) waves, between Alfvén and whistler
waves, between Alfvén and ion-acoustic waves, and among magnetosonic
waves. Galloway and Kim (1971) have obtained the coupling coefficient
for three collinear, longitudinal elecfron plasma waves in this model.
Boyd and Turner (1972b), in a study mentioned above, have considered

the interactions between two transverse waves and éne eléctrqn plasmg
wave in a warm plasma. A;comprehensive study by Kim (1972) has presented
the coupling coefficients, in the microscopic warm electron plasmz model,
for interactions among three plasma waves, among one plasma'wave and two
circularly polarized waves, among three circularly polarized waves, and
among two plasma waves and one circularly ﬁolarized wave, all of which
propagate quasiparallel to the static magnetic field. For the case

of perpendicular propagation, he has obtained the coupling coefficients
for interactions among three longitudinal cyclotron harmonic waves, and
among one longitudinal and two ordinary cyclotron harmonic waves.

Macroscopic warm plasma: In the work just mentioned, Kim (1572)

has also examined wave interaction processes using the macroscopic
lLagrangian of Section 4.2, His results include the coupling coefficients

for interactions among electron plasma and lon-acoustic waves with
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parallel propagation, and among an ordinary wave with perpendicular pro-
pagation, an electron plasma wave with quasiparallel propagation, and
an ion-acoustic wave with quasiparallel propagation.

Most theories of wave-wave interaction have been carried ocut assuming
the plasma to be homogeneous, In the experiments with which they have
heen compared, the plasmas have often been strongly inhomogeneous,
rendering the wavenumber synchronism condition (4,48) difficult to
realize experimentally. In these cases, comparisoh between theory and
experiment will be impossible, unless the theory is improved by taking
background inhomogeneity into account (Kino, 1960; Larsen, 1972). In
mitigation, it should be pointed out that many of the experiments were
aimed at studying the anomalous absorption of large amplitude waves, and
the subsequent heating of the plasma (Porkolab, et al.;1972; Stern and
Tzoar, 1966b; Dubuvoi and fedyakov, 1968; Hooke and Bernarbei, 1972; Chang,
et al., 1972; Keen and Fletcher, 1971), rather than to produce ideal
conditions for testing basic plasma theory.

Some experiments have, however; been carried out in effectively
homogeneous plasmas with synchronism in both frequency and wavenumber
realized. In particular, second harmonic generation caused by an ion-
acoustic wave propagating along a plasma column have been observed by
Litzenberger, 23_51.(1972). Three interacting ion-acoustic waves have
been studied by Ohnuma and Hatta (1970). Three interacting cyclotron
harmonic waves have been studied by Chang and Porkolab (1970), Parametric
excitation of ion-acoustic waves by whistler waves has been observed
by Porkolab, et al.(1972). To explain the observed wave behavior, it

was found necessary to include the effects of wave damping. With the
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exception of the case for harmonic generation by ion-acoustic waves

(1itzenberger et al., 1972), only qualitative agreement between the
solutions of the coupled mode equation and the waves observed has been
achieved (Ohnuma and Hatta, 1970; Chang and Porkolab, 1970; Porkolab,
et al,, 1972). The purpose of this section, then, is to establish
more nearly complete quanfitative comparisons between some of these
experiments and the theorj developed in Section L,

In this section we shall specialize the general results of Section I
to two experimental situations, The first will be that of Ohnuma and
Hatta {1970), for which we shall consider the collinear excitation of an
i ion-acoustic wave by two other ion-acoustic waves (Section 5.2L and by
two longitudinal glectron p;asma waves (Section 5.3). The second will
be fhat of Porkolab, 51_31.{1972), for which we shall consider tﬂe exci-
;ation of a collinear (Section 5.4),and a noncollinear (Section 5.5), ion-

acoustic wave by a large amplitude whistler,

5.2 Nonlinear Interaction of Ion-Acoustic Waves

5,2.1 The Experiment and Interpretation

The experimental set-up used by Ohnuma and Hatta (1970) is shown

schematically in figure 5.1. ' Their plasma had the typical parameters:

3 ~
n %ni=109/cm , T, =5x10

]
. , T, =~ 300° K

. o~ i o~ >
P =9 mTorr , Van b6 x 10'/sec Vin = 3.0 X 107/sec , {(5.1)

where the effective electron- and ion-neutral momentum transfer collision

frequencies have been calculated from {Ginzburg, 1970)
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ol 2z <ALy~30cm

2,8’
AMPLIFIER

Figure 5.1 The argon (g = 7.4 X 10“) plasma column used by Ohnuma
and Hatta (1970). The pump (K,Q) and signal (X,Q°)
ion-acoustic waves were excited with grid Gl' These
waves and the idler Qgﬂ,ﬂﬂ) ion-acoustic wave were

detected with grid G2.
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1/2

'v = 8.3 X 10° (ﬁae) n T
) e ne

-1 ... O
on sec (Te in K} ,

. T2 |
Vip = 1.1x 107 (ma%)y n =] sec™ (1, in ) , (5.2}

in 1 n mi
with nn(cm-3) being the neutral density and mi(gm) the ion mass.
. s . 2
The averaged electron-neutral collision cross-section, (na )e:k
8.5 X 10-16 cme, has been obtained from the data given by Brown (1966),
. C s . 2y . -1 2
and the ion-neutral collision cross-section, (1a )i 3.4 x 10 cm

2
has been assumed to be roughly U4(ma )e'

For nonlinear interaction among three ion-acoustic waves, a large
amplitude pump, QPQE,Q), and a small amplitude signal, 3sp5»’ﬂ:), were
excited by a grid immersed in the plasma. These waves and the parame-
_trically amplified idler, Biﬁgf%gﬁ}, were then measured by a moveable grid
(figure 5.1). A typical example of the measured results is reproduced
in figure 5,2, which showé that ES and Ep (when sufficiently weak)
decay exponentially, but that Ei is first amplified substantially from
noise before it decays., The measured decay rate of GS was fqund to be
roughly the linear ion-acoustic wave damping rate due to ion-neutral
collisions, But the decay rate of 8p for z s 4 em was found to

increase with the exciting voltage, Vp, applied to the grid when

H

Vp > vth ~ 2V, This observed behavior of &p is reproduced in figure 5.3

and may be attributaple to-a combined result of wave-particle,and other

wave-wave, interactions on the large amplitude pump wave, Eh'

Interpretation of the observed evolution of &j: It was found in

the experiment that 3z, (~ 2 em) is roughly independent of Vp, and
hence also independent of EP(G) if we can assume Ep(O)_a Vp. To

explain this observed feature of &, Ohnuma and Hatta (1970) used a
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Figure 5.2 A typical observation by Ohnuma and Hatta (1970) of inter-
action among collinear jon-acoustic waves., The exciting
grid for the pump, &p, and signal, &S, is located at

Z = 0, The peak of the idler, ei’ is located at Zg
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Figure %,3 The measured hehavior of Ep for several exciting voltages,
Vp, at the grid, For z < 4 cm, the spatial decay rate,
up, of Ep was found to increase with Vp when

vp > V., ~ 2V.[Ohnuma and Hatta (1970}, figure 167,
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set of coupled mode equations with identical wave damping rates, i.e.

1

W o=, = p, = [ Assuming (k.67), they were able to show that

)

ZO (Q‘O.T/up 0.7/1) is independent of Eb(O), as was shown in the
paragraph containing {4.67) in Section 4,4.2,

As indicated in figure 2.3, however, up increases substantially
with Ep(O) [assuming ﬂp(O) e Vp]. Therefore, the theoretical behavior
of Ei is more sultably described by assuming “p # Hg = Ky = H in
the coupled mode equations (4,64), whose solutions for this case are given
by (4.66), Furthermore, because &p is damped nonlinearly, it is
reasonable to assume that Ep(O) > gth’ Then, from (&.66), we have

£ (O)u
M(Z,) “MO=EET"”1 , (5.3)
th p
showing that the first condition of (4.67) fails. Therefore, the apparent
independence of Z, in Eb(O) was not satisfactorily explained by the
formula ZO ==0.7/up.

Since we can only assume ES(O) > 3i(0), use of (4.66) then shows

that ZO should satisfy

- = B - - 5

exp( ppZO) = T tanh{MO[l exp( ppZO)]} . (5.4)
p o

To determine Z, from {5.4), it is necessary to evaluate p, and

evaluate M, and u, as functions of 8b(0)/&th‘ This calls for the

examination of the linear properties and the nonlinear coupling coeffi-

cient of the ion-acoustic waves.
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5,2.2 Ion—-Acoustic Waves (I) and Coupling Coefficient: 6 = O

~

in this case we have K = K 1 , where iz is the unit vector in
the positive z direction, along which the static magnetic field is

s
 directed. The polarization constant, M , of (4.40) then reduces to

; -i{}
*
Mix = M;y = 21 2 7 Mzz = %i- ? Miy = M;x - 2S 2, 7
0°-Q, 8 aa™-a.")
5 s¥ s s* 2 2. e -
M_, =M = Myz =M, = ¢ , D = & YSVS K . (5.5)
For the experiment, we can assume
V2>>UV2(T >> T.) vk 2«1 (5.6)
e i e’ i _’ _ e =z ’ } -
3

where the second condition follows because vV, ~2.9X 107 from (5.1),
and Kz‘” 50 for a typical experiment wavelength of 0,21 cm.

Under the assumption of a low frequency longitudinal wave,

eI = {0,0,1} ) <1 , (5.7)

-~

the approximate ion-acoustic wave (I) dispersion relation can be obtained

by using (5.5) and (5.6) in (4.,42) and (4.43), For VE, << 1, 1t is

0" =V K " Vo= yy s (5.8)

where Va is the ion-acoustic speed. As illustrated in figure 5.4, the
wave coupling synchronism conditions are automatically satisfied over the

linear portion represented by (5.8).
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Figure 5.4 The dispersion curve for ion-acoustic waves (1) propagating
parallel to the dc magnetic field under the conditions of
{5.6). The synchronism conditions for nonlinear coupling
of three ion-acoustic waves (p, s, and i) are always

satisfied over its linear portion.
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The corresponding ion-acoustic wave action, group velocity, and
coupling coefficient can be obtained by .using (5.5)-(5.8) in (&,46),

(4,50), and (4.53), yielding

I 1 I !

i R S P RS E
KZ Y v EQK 2 NKZ ~Z KZ

€ e zZ
v +1
ITI e
cC . =A oo = . (5-9)

ps1 KZKZKZ‘ 'Y 2V )'I'K K JK.'I
e e & Z Z

The significant contributions in C come from the A}, Ai, and

psi

A; terms of (4,46). Using (5.9), the coupled mode equations {4.52) can

be reduced to the form derived by Litzenberger and Bekefi (1969),

5.2.3 The Dependence of ZO o

To determine the dependence of Z, on &P(O), we now have to deter-
mine the temporal damping;rate of an ion-acoustic wave due to ion-neutral
collisions., This can be shown to be roughly vin/E (Ohnuma and Hatta, 1970).
The plasma parameters given in (5.1} show that the ion Landau damping

rate (Ginzburg, 1970),

Yis /2 T \3/2 T
Li __ & 1 e e |
@ (g)l [0’1/2 * (Ti ) P (_ ETi)] ’ (5 +10)

is much smaller than vin/E, and negligible., Using (5.1), (5.2), (5.8),

(5.9), and (4,63}, we have the following values of the normalized

parameters

o -3 ~1 by 1075 I -5 - |
vV, ~2.9% 10 »  Va=1.kx10 ;  TI'=8.3x10 s HI=5.9 , (5.11)

where we have taken Ye = 5/3 as a convenient wvalye,

141



It remains to obtain the dependence of up/u and M, on eb(o)/ath'
From figure 5.3, we first plot the corresponding values of up/u and the
pump wave exciting voltage, Vp, as shown in figure 5.5(a}. Assuming
&p(O) e« Vp, figure 5.5(a) indicates the approximate relations between

up/u and EP(O)/eth, and M, and up/u,

"p () k.3 -3.3E (5.12)
P g o3 +0.7T M, >Lk 3 - 3,3k 5.1
H €tn ’ © ny o

where the second relation has been obtained from (4.66) by use of the
first relation. Combination of (5.12) with (5.4} then determines the
dependence of Zy on EF(O)/Eth, which is as shown in figure 5,5(b),
It is seen that Z, (= 2.5 em) is in good agreement with the observed
value of 2 cm and its dependence on &p(O)/&th according to (5.4) is
much weaker than that according to ZO 5=O.T/up, which is obtained under
the conditions (4.57) used by Ohnuma and Hatta {1970). Thus we conclude
that, for &p(O) > &th’ and with an externally applied signal wave

BS > Ei’ the apparent independence of Z%. from 8?(0) observed by

0

Ohnuma and Hatta is likely to be a result of the increase in up with

ep(o) .

Finally, it is of interest to examine the magnitude of Sth for

the typical pump field strength indicated by Obmuma and Hatta, which is
Ep—v 32 V/em, corresponding to a ratio of rf to dc charge densities of
roughly 1/20. For the typical pump and signal frequencies of 200 and
120 KHz, we have, by use of (4.30), (5.1), and {£.8),

-l‘l' * - ”
Q=7,0x 10 s Q=42 x 104 s K =50 |, K =30 .(5.13)
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Figure 5.5 (a) The increase of up with the grid exciting voltage, Vp,
for the pump wave,as deduced from figure 5.3, and their
approximate relation, (b) The dependence of the peak
location, Z,, of the idler, &,

of the pump, E,p(O), according to {5.4) and the relation,

Zy ﬁ‘D-T/MP used by Ohnuma and Hatta (1970).

on the boundary values
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Then use of (4,61}, (5.9), (5.11), and (5.13) gives € ~1.3x 10,

corresponding to a pump threshold of 4.2 V/cm, This value confirms that
the assumption EP(O) > €&, in connection with (5.3) and (5.4} is

appropriate.

5.3 Excitation of an Ion-Acoustic Wave by Two Electron Plasma Waves

We will now examine the possibility of exciting an ion-acoustic wave
by two electron plasma waves in the experimental plasma discussed in
Section 5,2.1, Our purpose is to determine whether the nonlinearly excited
ion~acoustic wave should be observable under practical conditions, so that

a measurement of the coupling coefficient can be carried out.

5.3.1 Electron Plasma Waves (P) and Coupling Coefficient: & = O

Use of (5.5) and (5.6} in (4.43) and (4,44), with the assumption of
{121, yields the dispersion relation for the electron plasma wave (P),

2 22 P
@ =1+ v VK, , e = {0,0,1} . (5.14)

This P wave dispersion relation is plotted, together with that of the
ion-acoustic wave (I), in figure 5.6, which shows that the interaction
between the electron plasma (pump and signal) and ion-acoustic {idler)
waves is of the contra-flow type according to the definition shown in
figure 4.2(b}. Because the slope of the P curve at VK, ~0.1 is
much larger than V., we have approximately K; =2K_ = —2K;.

The electron plasma wave action and group velocity can be obtained

by using (5.5}, (5.6), and (5.14) in (%.50), giving

K
P _ P ¢ 2z &
| ¥ 3 HKZ &iz\{eve ﬁ_ . [5.1/)

2
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Figure 5.6 Dispersion curves and synchronism conditions for longitu-
dinal electron plasma (pump and signal) waves (P) and

ion-acoustic (idler) waves (1),
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The coupling coefficient can be obtained by using (5.5)-(5.8) and (5.14)

in (L,46) and (4.%3), yielding

PPI 1
C oy = hphns =~ (5.16)
ps1 z'z'z YV K’
e e Z

Equations (5.13) and (5.16) may be used in {4.54) to obtain the temporal

amplification rate, Tb, for the ion-acoustic wave as T
2 e
QMIE l
723‘ P fe a7y
-0 . 2 2 VAed )
Lo v
ee

which agrees with the result given by Kadumtsev (1965}, who considered

the case Ye = 1.

5.3.2 Evolution of &; and i‘f.S

As an example, let us consider an ion-acoustic wave excited with
frequency Loo kHzZ and wavelength 1.1 cm, so that 0 = 1.k x II.O"3 and
K; = 100. The corresponding pump wave number is then KZ = 50, The
Landau damping rate, rﬁmpe’ for this electron plasma pump wave can then
be obtained from (h.81). It shows that Iippe is much smaller than the
damping rate due to electron-neutral collisions, ven/e’ whose value is
given by (5.2) (Ginzburg, 1970). Thus we have TP = 1,3 x 10_2. By use

of this result, and (4.63), (4.61), (5.9), (5.15), and (5.16), the para-

meters in (4.68) and (L4,69) take the values

p,p—_-—-p_sf'**EI 3 ui&5.9 3 Z < 1.8 5 v = 1,1 ;
i/2
. ) luslﬂs
& = 2.1 X 10 i ]MOI = 2,1 X 10 , —=] =0.1. (5.18)
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Since X =z ’MO| << 1, the approximate solution of (4,70) can be used,

When (5.18) is substituted, (4,70) becomes
Eia‘{ﬁi(O)[%xp(—E.lz)-—10—3exp(2.12il+ 0.021 SS(O)sinh(E.IZ) exp{-32) ,

E«S*[BS(O)exp(B?;Z) - 9.0019 Bi(O)sinh(EBZ)] exp(-32) , (5.19)
where we have assumed EP(O) = 5,6 X 10-4, corresponding to a field
strength of 17 V/cm.

The idler equation in (5.19) shows that if EQ(O) < 50 €, where
81(0) = sin is the thermal noise level for some acceptable measuring
frequency bandwidth, no observable &i(Z) above €, = is possible,
Assuming.a measurement bandwidth of 2 kHz, the thermal fluctuations in
thé electric field of the.ionuacoustic wave branch may be estimated roughly
to be 1.5 x 107" V/cm near 400 kHz (Bekefi, 1966), To excite & to
above this level near Z ==0,2, i,e. 3.5 cm from the pump source,with a
17 V/cm pump field, will require that 35(0) S 2.5 % 10-7, corresponding
to a signal field strength of 7.5 mV/em, According to the signal equation
in (5.19), this requirement is equivalent to having 65(0.3} > IOH&, i,e.
injecting a 3 V/cm contra-ilow signal wave at =z =5 cm,

It remains to determine whether these parameters represent an acceptable
experiment to demonstrate the interaction between collinear electron plasma
and ion-acoustic waves. According to (4.82), the condition to allow trapped
electron effects on the pump wave to be neglected is Eb=§3.4><10-6. From
{4.83), the condition to allow electron heating effects due to the. pump

wave to be neglected is &p ~ 2.6 X 1077, Alse, from (4.85), the
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plasma will not become significantly inhomogeneous due to spatial wvariation
of the pump wave amplitude, provided that Ep < Ve ~ 2,9 ¥ 10”3. With

the value of gp,u 5 X lO-h, it is seen that, first, the assumption

sp = exp(-upz) is inappropriate because of the trapped-particle effects,
thus rendering (5.19) also inappropriate, and second, according to (4.83),
the background electron temperature may become roughly 100 times the

value given in (5.1) when the pump wave is injected, thus significantly
changing the linear wave properties and nonlinear coupling coefficient
used in this subsection. Also, due to the temperature increase, the
thermal fluctuations in the ion-acoustic wave branch may become much
stronger than the previously indicated value of 1.5 X 10”7 V/em, As a
result, we conclude that it will be difficult to demonstrate the interaction
between electron plasma and ion-acoustic waves in the experimental plasma
defined in Section 5.2.1.-

5.4 Excitatien of an Ion-Acoustic Wave by Two Whistlers; Collinear
Propagation

This nonlinear process has been cbserved in an experiment by Porkolab,
Arunasalam, and Ellis (1972), A detailed quantitative comparison between
the theoretical results of Section 4 and the observed parametric amplifi-
cation process in this experiment will be given here, It will be shown
that there is wide disagreement between theory and experiment. The compari-
son will suggest that important factors were overlooked in the theoretical
model, and indicate possible directions in which the theory might be

improved,
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5.h.1 Experimental Observations

The experiment by Porkolab, et él.(1972) was carried out in a
steady state magnetized helium plasma column, which is illustrated
schematically in figure 5.7. The plasma has the following typilcal
parameters:'

n =>=n17‘"3>(1012/cm3 , T ~5 eV

T, =0.1 ev
e i

' 6
P =2 mTorr , v ™3.TX 106/sec » o Vig =~U4,9x 10 /sec , (5.20)

have been determined by use of {5.2). The effec-

6

' 2 -6 2
tive electron-neutral collision cross section, (rna )e 5 X 10 "cm , has

where v and v
en in
been cbtainéd from the data given by Brown (1966), and the ion-neutral
s . 2y a4 ~15 2
collision cross section, (ma )i 2 %X 10 em, has been assumed to
2
pbe 4(ma”) .
=]
A large amplitude whistler pump wave;with a typical frequency of
2.45 GHz and a wavelength of 1.6 cm,was injected into the plasma with
the dc electron cyclotron frequency set at 3.68 GHz. Their normalized

values are then

QN=0.166 , EK_=1.b , Qc"'*O.ElL . (5.21)

The pump wave variation was ohserved to be nearly exponential with a
damping length of rxoughly 20 cm, corresponding to a normalized damping
length of up = (.,016. A typical interferometer output is reproduced

in figure 5;8, for a frequency of 7.5 MHz, i.e. ol =l g x lO-h. It shows

that the excited ion-acoustic (idler) waves consisted of two wavelengths.

149



—p Z<AL,~3m

SWS

- \

Q
m—— - —

NN\

~

Figure 5.7
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The experimental set-up used by Porkolah, Ez_gl.(l972),

in which ion-acoustic (idler) waves parametrically ex-

cited by whistler (pump) waves were observed, The pump wave
(E,Q) was injected into the magnetized plasma column by a
slow wave structure (SWS), The spatial behavior of the idler
wave (E”,Q”) was measured by use of two rf probes (Pl and P2)’

narrow-band-pass filters (F), and an interferometer (Int.).

150



INTERFEROMETER OQUTPUT
(ARB UNITS)

. l , e
0 2 4 6

AXIAL POSITION z{(cm)

Figure 5.8 The interferometer output showing the ion-acoustic

4

3
obtained by Porkolab, et al. {1972). The approxi-

(idier) waves at 7.5 MHz, i.e, (I' = 4,9 x 10~

mate behavior of the longer wavelength idler wave
for z ¢ 2 em 1is shown dashed, and was obtained
by subtracting the shorter wavelength idler wave

from. the trace,.
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Additional measurements indicated strongly that the longer wavelength

o]
wave propagated at 6" E=200 and the shorter at §" = 507, where &”

is the angle between K’ and the dc B field. The wavenumbers were
found to satisfy K; >~ ~K_  and K; = 2K, in the first case, and

K’ = -k" and IK”I >> K, in the second case. We shall consider the

~

o . N
first case under the assumption 8" =0 here, and defer discussion

of the second case with 87 3‘500 to Sectibn 5.5,

It should be pointed out here that only the ion-acoustic wave in
the second case was found to satisfy the dispersion relation O ==VaKﬂ
so there is a reasonable doubt that the excited idler wave in the first
case can indeed be cpnsidered as an ion-acoustic wave defined in an
infinite homogeneous plasma background. We shall proceed by assuming

that it is, and see whether the idler wave behavior shown in figure 5.8

agrees quantitatively with the corresponding theoretical results,

5.4.2 Wnistler Waves {R) and the Coupling Coefficient: 6 = O

Use of (5.5) and (5.6} in (4.43) and (4,44}, with the assumption of
Q ~ chv 1> Qi, yields the dispersion relations and polarization vectors

for the right-hand (R) and left-hand (L) polarized transverse waves,

2 2 R, L -1/2

s el =28 20}, (5.22)
where the upper sign is associated with the R wave. For (< C%, the
R wave corresponds to the whistler, whose dispersion relation is blotted,
together with that of the ion-acoustic wave (1), in figure £.9, which shows
that the interaction between the whistler (pump and signal) and ion-

acoustic (idler) waves is of the contra-flow type. Because the slope
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Figure 5.9 Dispersion curves and synchronism conditions for
whistler (pump and signal) waves (R) and ion-

acoustic (idler) waves (1I).

153



of the R curve at KZ = 1.4 is much larger than Va’ we have approximately
K; a=2Kz ﬁ’-EKé. Since this condition was observed experimentally, the
collinear approximation to the wave interaction process is seen to be
appropriate,

The whistler wave action and group velocity can be obtained by using

(5.5), (5.6), and (5.22) in (4.50), giving

K K
o it —— |, W =% -g(sﬁ )'1 : (5.23)
z Q (Q—Qc) z

\J7
7
~—
]
—
N
(s}
~~
i)
=
Q.
—
M
n
n
~—

The coupling coefficient can be obtained by using (

in (4.46) and (L.53), yielding

-,

K K
RRI IRI 1 z z
= C o = N oy = - (5.24)
psi K KK -K KK 2 u2 -, ’ 2
K -
7 Z Z zz z 'ere 2 Q (Q—Qc) Qi Qc)
. R L N
where we have used the relation, Sk = B.g - In this expression, the
2 42 z z en
factor 1/Y.V_ K; is due to the factor 1/D; in M_, of (5.3). If

the ion-acoustic wave (I) were replaced by an electron plasma wWwave (p),

. . 2 2 u2
this denominator would be replaced by [°° - Yeve K; = Q”E =1, by use
P
of (5.5) and (5.6). The resulting coupling coefficient, AwiRK’K”’ is
Z Z Z

then identical to that obtained by Harker and Crawford (1970) for the
interaction between two right-hand pelarized waves and an electron

plasma wave,

5.4.3 Evolution of Ei and Es

To determine the behavior of Ei, we need to obtain the whistler
and the ion-acoustic wave damping rates. The whistler wave is damped by

electron-neutral collisiens (Tc) and, and by cyclotron resonance (f}) when
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Q 1is close to C%. They are given by (Ginzburg, 1970)

: 2 o
Ven 0 . 1/2 (Q-Qc) (Q—Qc) .
L P 3 » L7 x o ®FP|T T - (5.25)
pe/ 20(0-0 )"+ 0 ez Ve Xz

Use of (5.20) and (5.21) in (5.25) and (5.10) shows that the damping of
the whistler and the ion-acoustic waves is predominantly due to electron-
and ion-neutral collisions, respectively.i Then the first expression of

I .
(5.2%), and the relation T yin/abpe’ give

By -5
m~67x10"7 , T =25x10" . (5.26)
Use of (%.20), (5.21), and (5.23) gives the group velocities Wt~ 7.2x 1077

-5
and .U}.z.vauﬁth.T.x.ID -~ .. .Use of these results and (5.26) in {4.63) then

gives

I

g = _9,2 % 10 , My ~0.23 , (5.27)

where Hy < 0 because 'Es =~ Tizl Note that |usl is much smaller than
the observed spatial damping rate for the whistler pump, up z’0_.016,
showing that the pump wave is heavily damped nonlinearly,

It is also necessary to determine the values Cpsi and gth before
the theoretical behavior of €, can be predicted, Using (5.21), (5.23),

(5.24), (5.26), and (4.61) then gives

C ==ﬂ1.8><1o6 , & = 1.0 x 1077

pSi th ? (5-28)

where the corresponding unnermalized pump threshold is 16 V/em, We
expect this gth to be smaller than 8p(0), which can be determined

approximately from the input power and cross-sectional area of the plasma
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at the pump wave exciting structure (Lisitano, Fontanesi, and 8indoni,
1970; see figure 5.7). Taking 0.8 kW and 20 cmg, respectively, and
using (5.23), we find SD(O) S 7.2 X 10_6, which is smaller than ¢
of (5.28). Therefore, if both Ve, #nd v, given in (5.20) were not
overestimated, the theory predicts no parametric excitation of the ion-
acoustic wave.

To remove this discrepancy, let us assume that [™ = T, = 3.4x 10-5,
as opposed to (5.26). Then the threshold field is reduced to
2 h =7 % 10-6. Use of this ¢&

t th’
(= 4.6 % IO-M), (5.26), and the observed value of Ho (>~ 0.016), in

the reduced values of us

(4.69) then gives
v=17 , M| =2.0 . (5.29)

Because v >> IMOI # %, the approximate solutions of (4,72} can be used.

1/2
) /

With (|u5|ss/uiﬂi =0.14 for this case, (4.72) becomes,

£,(2) =~ ,(0) [exp(-0.53 2) - 0.0038 exp(-0.016 )]
+ 0.0085 EQ(O)[éxp(-O.016 Z) - exp(-0,53 Zﬂ . (5.30)

The observed ion-acoustic {idler) wave has a nearly monotonic variation
from ¢ to 6 c¢m from the pump wave exciter, According to figure 5.8, the
ratio of &i to the apparent noise amplitude, gin’ changed approximately
from €. /8 =15 at Z=0 to & /8 = 2.0 at 27 =~ 19, It is clear

i’ in - i’ in
that this observed 61 behavior is substantially different from that

indicated by (5.30).
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The discrepancy between tﬁeory and experiment for this case may be
due to the effects of the finite plasma column size, the noncollinear wave
propagation (i.e. 8" ﬁ=20°), and some other nonlinear processes, which -
wefe neglected in the foregoing theoretical model.‘ In a more realistic
model, the parameters uséd in (4.68) and (4.69) may be modified by these
effects. It will be noted, in particular, that because Hy >> uﬁ >> Iusl
in the case of interest here, Ei(Z) depends most strongly on ui
(through v). If we reduce u; by a factor of L from (5.27) to uy = 0.13
and Ti = 0,6 X 10_5, with p_ {=~-L.6 x 10_4) already reduced by a

factor of 2, then we have Sp(O) ﬁ‘EEth, v =L,7, énd IMOI = 2_.0. Using

these parameters, (4.72) can be used to estimate & and & as

&i(Z)'ﬁ‘Ei(O){%xp(-O.I3 Z) - 0.061 exp{-0.016 Zﬂ'

+ 0,038 éé(O)[éxp(—0.0l6 Z) - exp(-0.13 Zﬂ s

&S(z) = gs(o)e:&p(u.éx 1o“l*z) . (5.31)

Equation (5.31) gives a good match to the observed &i with 81(0):85(0):Ein
given approximately as 1:80:1. It is also seen from (5,31) that for

A 19, we have ES(Z) 2"‘FJS(O) == 80 €.+ To determine if this modification
in My is appropriate, it would be necessary to measure ES(Z)/sin in

the corresponding experiment.

5.2 Excitation of an Ion-Acoustic Wave by Two Whistlers: Oblique
Propagation

In Section 5.4 it was shown that the observed behavior of the idler
ion-~acoustic wave with wavelength 0.8 om does not correspond to the

collinear three-wave interaction theory in an infinite homogeneous plasma
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background. Here, we shall examine the theoretical hehavior of &i
corresponding to the second observed idler ion—acoustic wave with
wavelength roughly equal to 0.16 cm (see figure 5.8). Typical wave-
numbers of the idler ion-acoustic and signal whistler waves were found
to be

(5.32)

=
¥
’.—J
&)
S
m‘h
|
e
o
=
ATy
=
P
=t
=
[an]
i

T+ 52

Since obliquely propagating waves are involved in this wave interaction
ics of these waves may be very different

from their corresponding waves with parallel propagation. Therefore, we

shall proceed with a discussion of these obliquely propagating waves.

5.5.1 Obliquely Propagating Ion-Acoustic Waves (I”),’E” = {K;,O,K;}

In the hydromagnetic. region ()" << Qc = 3.3 % 10_5

), the linear
ion-acoustic wave dispersion properties may be significantly affected by
the presence of a sufficiently strong de magnetic field. For the experi-
mental plasma of interest here, the Alfvén speed, A 3=(G&ﬂc)1/2 s

2.8 x 10h3, is much larger than the ion-acoustic speed, v, = b7 x 10-5.
The ion-acoustic wave dispersion relation; and the polarization vector in
the hydromagnetic region, are then (Ginzburg, 1970)

Qh’2 —~— v 2K.f12

a Ef = {0,1,0} . (5.33)

Here'sﬂ is linearly polarized perpendicular to x” and B,
The ion-acoustic wave observed in the experiment, however, had a
-k
frequency Q” == 4,9 X 10 ', and therefore does not fall into the hydro-

magnetic region. It is necessary to examine the properties of the wave
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. 2 2 2
in more detail. Under the condition (5.6), and with QC > 07 > Qi s
we have from (4,40)
i” iﬂ iﬂ' 1 iﬂ iﬂ'* -iﬁi
MX}I =M = MZZ = 2 ? X =M ® - ﬂ3 ?
v o)’ v y o)
e’ --u2 e’ u2+a25in29”
Mx ™3 » My™-"73 5.
0 vy Q) “cos” 8"
c c
& I s .
2 ¥ -
Miz = —-1-2- [ae_ - (a2+'tan29”)(u +a2)] » Miy = M;x o~ ;';u ,
o, o'
2 2

I ﬂ* I * . ”

Mo, = MO ?=“'+g tant” , MO =M &=-_i3§%g7§— ,
Q v Vooa'a (u™a®)
c c
w2 22 o
v e T s v (5.34)
Y v g’ 9] cos B
- ee 'z (G

Although a~, b~ << 1 in (5.34), they are included because the zero order

terms are found to cancel each other in the derivation of the dispersion

relation and the polarization vector.

we then have

e e
2 NE 2
(v, D)~(k /v,

=

- revealing a nearly linearly polarized

e 2 »2
0 v, K

pat1

The approximation. s 1is
When ( << Cﬁ, we note that ’g”
case.

We may now substitute (5.3%4) and
1
AR

reduces to |

Eﬁ $=Va

Substitution of (5.34) in (4. h2)-(k. hL),

longitudinal wave, since {I ~ 15 Qﬁ'

. a2 2, 2
appropriate because l/Va ~ 30 K; /VA .

[
A

33) of the hydromagnetic

(5.35) in (4,50) to obtain

%sine”, 0, cosd”

. (5.36)
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When 67 = 0, (5.36) reduces to the corresponding expressions in (5.9},

Also, we have ¥, = 8" since ui is parallel to _E”.

5.5.2 Obliquely Propagating Whistlers (R"), K’ = {Kg, 0, K7}

Reduced forms of the plasma polarization constant, M°

. 2
obtained from (5.5) by use of (5.6), and the condition, 0% >» Y.V, K'E,

1 in /a° 0
C
it L e’ 1 ,
Moo= M™ = ——s |-i0 /0 1 0 . (5.37)
9 0" -q, . 2J
0 0 1-0, /a°

The dispersion relation and the polarization vector for the ollique

whistler wave may be obtained from {L4.42)-(L4. 44} by use of (5.6), (5.37),
2. 2 . . .2 2 2

and the conditions Q"<.Qc and ( 0, sinue << 4{077-1)"cos"987 (see

for example, Helliwell, 1965), We have

12 —_— a2 ’ >
K= - ' - (% >8" > —g) ;
Q’+§%cosa
.E) > {sinf” - g 5 12 , cosb’+ 2 5 . (5.38}
QCK' tanb ” QCK' sinf” QCK’

F

When 6° = 0, e’ reduces to EF of {5.22), Since K'EC% > 07, we
have 's' == {sine', 0, cose'}, which represents a linearly polarized
longitudinal wave, corresponding to a whistler wave that is near the
oblique cyclotron resonance Q =-Ncosf” (3/2>08" > /2),

Use of (5.37) and (5.38) in (4.50) now gives
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@ 2.2

, 9
# ’ 1
3 = g -5 |1 02 sin29 + {1 - cg 00528 S5,
® 2(a”-a)) ol ol Q, Q'sin ®
A c
9 U SR S {-cosb’, 0, sing’} . (5.39)

GEQ K ‘sing

Here, the second equation for 55 is obtained by replacing o’ by

_Qccose'(l - 1/K'2), from (5.38), before eliminating terms involving

l/K’2 as small compared with unity. From (5.39), we see that the direc-

tion of kg is perpendicular to K* and oriented so that TS = 68 -n/2.

~

£.5.3 Synchronism Conditions and Coupling Coefficient

Synchronism conditions: Since the signal and idler waves propagate

obliqﬁely, %ﬁe é}ﬂéﬂrbnism éonditioﬁérﬁecoﬁe”ieés obvibﬁs than thosar
cases shown in figures 5.4, 5.6, and 5.9, The synchronism conditions for
this case are ghown schematiecally in figure 5.10. It éontains the dis-
persion curve R from (5.22), for whistler waves with parailel propaga-
tion; the dispersion curve R’ from (5.38), for whistler waves with
oblique propagation near 67 = xn + 520, and the dispersion curve 1”
from (5.35) (plotted with respect to a displaced origin 07), for ion-

acoustic waves with oblidue propagation near 8’ ﬁ=480. Since the whistler

signal on the R” curve is nearly at the oblique cyclotron resonance, we

have
Q=>0">0q [cos8’| > 0" . (5.40)
RR 1"
Coupling Coefficient: To obtain the coupling coefficient, CKKaKH 5
) LR’ ” Lr\.r-lr-u
(4.53) shows that we have to evaluate A _yx > Since e =e /. This
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Qe “ﬁtg,‘ N, T S i
- Q. cose’ \ p(K Sl)

7 /

77

K"
o (K”\Qo)

Figure 5,10 The synchronism conditions for interaction among a whistler
(R) with parallel propagation as the pump (K,Q), an
obliquely propagating whistler (R} as the signal (5',{]'),
and an obliquely propagating ion-acoustic wave (1) as
the idler (rI\{J”,Qﬂ). The I1I” curve is plotted with respect
to the displaced origin, 0', to show that the conditions,

K=K+ K" and Q=07+ (', are satisfied.

162



reguires MY and M° for a left-handed circularly polarized wave, which

can be obtained from (5.36) as

i’.x. e e * (L_\ l{-l)

M- =M
- Q=0

~ Q=0

Then use of (5.22), (5.34), (5.35), (5.37), (5.38), and (5.41) reduces the

P
expression for A;ﬁ&;ﬂ from (4.46) to a simpler form. With the parameters

given in (5.20}, (5.32), and (5.40), the significant terms are, in order

of «decreasing importance

,_ .o- » Pl
IR I Q ’ e . b, e . ’ Q_ ", e r ae, e .
e A (,‘3 ¥ 5) (5, LIS ) o\ M re (KM e

5
z

9] ’ e ’, e” i
g e )yt ) (5.42)
The corresponding coupling coefficient, Cpsi’ is then
i 1[2 ” OQsin26
o - A RRI" __ 27" K'sinbB | 1 ¢ ~ 1 (5.43)
“psi T “-EK X’ - 2, 2 2 2 2| ? A
Ps K Q( ﬂc Q) Qh’ (QC -G ) ,Yeve K"

'
o

where we have made the additional simplifications to A v 5 8appropriate

RR
-KK 'K
to the experimental conditions of interest, K" =K’ > Kz, g = g" = 8'—1@

n=0"> 0" and F > YEVEEK”2. The first term in the square brackets
of {5.43) is the combined contribution of the first two terms of (5.429).
Note that {5.43) cannot be reduced to (5.24), for the coupling coefficient
among whistlers and ion-acoustic waves with parallel propagation, by

making 6 = 0. This is because the polarization vector,'g', in (5.38) for

the obliquely propagating whistlers, is nearly a linearly polarized 1ongi—'

tudinal wave, rather than a circularly polarized transverse wave of (5.22).

i
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5,5.4 Evolution of E& and E.S

For interaction of obliquely propagating waves, the coupled mode
equations of (4.79) are required, We make X = O because only Ei aleng the
axis of the plasma column were measured (Porkolab, et al., 1972), After sub-
stituting the appropriate values from {5.20), (%.21), and (5.32), for
Hy (=0.016) and 6 (=50°), and using the experimental pump wave
amplitude, Ep(O) =T7,2 X 10-6, we obtain from (5.36), (5.39), (5.43),

and (4.69),

ju _ =-3.7 , gu, =2 cz-i+.3><1o5 ,

)1/2 =21 (5.4}

The expression for [MOI is modified from (i,69) by replacing uS and
U, by U, and uiz, respectively, following the definitions of (L4.77).
To obtain u, , we must use (5.27) and ¥, = 8” =50° 1in (577,
To obtain Hgp? an expression for the damping of an obliquely propagating
whistler is required, It is (Ginzburg, 1970)
Yen Q

=5 , "o (gf > 67 >'%) ? (5.55)
pe 20 (Qgcose'+ 09+ Qc

which reduces to Q'ven/mpeﬂc at the cyclotron resonance (7 3’—C%cos€').

Then use of (5.45), (5.39), and (4,78) yields the value for Hyy+ We have
b, =0.3%  ,  u_ =~6.8x 1073, {5.46)

1 5Z

By use of (5,46), the value of up(3=0.016), and (4.69), we find
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’
t

ol o vw) =12 . 5.4
v 24 <up Hsz uiz) (5.57)
According to figure 5.8, we are interested in the region where z < 2 cm,
which corresponds to Z « 5, and hence upZ << 1. Therefore, from
{5.44) and (5.4%7), we have X =‘|MO' > v > 1, so (4,74) can be used to
approximate €& and E_. Substitution of (5.44), (5.46), and (5.47)

\

in (4,74) then gives

1

ei(z) e [e_( )coé(o.'jh 2) + 0.39 E_‘,S(O)sin(O.Bll- Z)]exp(-lO.lT zZ)

e_(2z) = [gs(o)cos(o.3u z) - 0.39 & (0)sin(0.34 Z)]exp(—0.17 z) o, (5.48)

which have been plotted in figure 5.,11. Note that good agreeﬁent ofr Ei
with the experimental obsérvations has been obtained without changing the
value of u, given in (5.27). This indicates that this value of Wy 1s
acceptable as the collisional damping for short wavelength ion-acoustic

" =15), For K’ = 3, however, the results of Section 5.4

waves (K
suggest that the long wavelength ion-acoustic wave may have been strongly
modified by those factors iﬁ the experiment not included in the wave
theory of an-infinite homogeneous plasma bhackground. Finally, to make the
agreement more satisfactory, &S(Z) and ein should be measured in

the experiment to see whether the theoretical result in (5.48) is also

acceptable,
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O EXPERIMENT

Figure 5,

"’““'“gi/sin

. (5.47
—— EEi eqn. (5.47)

z (cm)

AN P~ )
5 0" z
" .
.

11 Comparison between the observed evolution of the short

wavelength idler ion-acoustic wave, deduced from a result
obtained by Porkolab, et al, (1972) (figure 5.8), and the
theoretical evolution of €,(2), according to (5.48), with
81(0):89(0):E&n given approximately as 5:4%:1. The
theoretical evolution of the signal whistler wave amplitude,

ES(Z), is subject to future experimental verification.
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5.6 Discussion

The verification of linear plasma wave theofy imposes oﬂly the
necessity for verifying the dispersion relation, i.e, measﬁring
;5 and (. In the case of nonlinear wave-wave interaction, it is
necessary to establish not only that the linear waves satisfy the dis-
persion relation, but that also that the synchronism conditions are satisfied
and coupling coefficients follow theory. This requires more extended
geries of measurements, providing details of the amplitude variations
of the pump, signal, and idler waves with distance, Few satisfying

comparisons between theory and experiment have been made so far.

Werhave tried to remedy this difficiency to some extent by predicting,
in Section 4, the wave amplitudewﬁéhaviéf in spaée, taking infto account
such practical factors as damping of the pump, signal, and idler waves,

In this section we have tested this theory against available experimental
results {Ohnuma and Hatta, 1970; Porkolab, et 5}.,1972). Unfortunately,
these experiments do not provide all the data required for a complete
quantitative comparison with theory, since they are confined to a qualita-
tive presentation of the idler wave behavior without specifying the
observed values of pump threshold, noise intensity, and, in one case
{Porkolab, et al, 1972}, the signal wave behavior.

The four examples treated have all involved the excitation of ion-
acoustic waves, either by other ion-acoustic waves, electron plasma waves,
or whistlers, In Section 5.2 we have shown satisfactorily that the
observed independence of the location of the idler wave peak from the ion-

acoustic pump wave amplitude is due to the increased pump wave damping
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with amplitude. In Section 5.3,we have examined the difficulty of exciting
an ion-acoustic wave to observable amplitude by injecting two counter-
streaming electron plasma waves into a weakly ionized plasma when
appreciable collisional damping occurs. In Section 5.@, the predicted idler
wave behavior has disagreed with the experimental results. We have shown
that the discrepancy can be explained if the effective ion-acoustic wave
damping ﬁas substantially lower than that due to electron-neutral collisicns.
Further theoretical and experimental work is necessary to determine
whether this discrepancy is caused by inhomogeneous plasma background,
oblique wave propagation, or by other nonlinear wave processes. Good agree-
ment has been obtained in Section 5.5, where the excitation of an obliquely
propagating ion-acoustic wave of short wavelength was considered. The
results have served to demonstrate the need for extensive and detailed
measurements to be taken, in which wave and noise amplitudes are thoroughly
documented, 80 that detailed comparisons can be made against theories such
as those of Section 4,

It will be realized by the reader that the averaged Lagrangian method
is more efficient and versatile than the conventional iterative method
for the description of nonlinear wave-wave interaction processes, The
results of Sections 4 and % can be readily applied to wave interaction

processes other than those studied in this section.
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6. CONCLUSIONS

The main aim of this thesis has been the establishment and applica-
tion of Lagrangian methods to magnetoplasmas descriﬁed by macroscopic
equations. This involves derivation of a Lagrangian of which the
given macroscopic equations are the Euler-Lagrange equations cobtained
by applying Hamilton's principle. We have taken two approaches to this
problem. In Section 2, we considered the general mathematical inverse
problem of the calculus of variations, i.e. the derivation of Lagrangian
densities from an arbitrary set of equations. We were able to establish
sufficient conditions for systems of first and second order, quasilinear,
differential equations, and used these conditions to transform equations
apparently not in Euler-Lagrange form to Euler-Lagrange form, As examples,
appreopriate Légrangians were obtained fof a linear resistive transmission
line, and for a linear, collisional, one-dimensional, warm plasma,

For reasons summarized in Section 2,5, it was found that substantial
further development is necessafy before this general mathemafical aﬁproach
can be used to obtain Lagrangians for plasmas, Consequently, in Chapter 3{
a suitable Lagrangian'density was obtained for the macroscopic plasma
description through enefgy considerations, taking account of the dual
roles played by the dynamic variables, i.e, thé macroscopic plasma cell
position and electromagnetic potentials. The effects of viscosity, heat
conduction, and elastic collisions were included by energy balance
arguments, To obtain the cofresponding Hamiltonian, the canonical
momentum conjugate to the plasma cell position was defined in Lagrangian
coordinates, while the canonical momentum conjugate to the electromagnetic

vector potential was defimed in Eulerian coordinates., The resulting

169



Hamiltonian was shown to equal the appropriate macroscopic plasma energy
at t = O, For completeness, the Hamiltonian corresponding to the Low
Lagrangian (Low, 1958), appropriate to the microscopic description of
plasmas, was obtained; and shown to equal the appropriate microscopic
plasma energy at time €., It was found that, for a collisionless (Vlasov)
plasma, the macroscopic Lagrangian could not be obtained by a simple
velocity integration of the Low Lagrangian, This fact was traced to

the loss of particle discreteness in the macrozceple approzximation.

In Section h, the macroscopic lLagrangian was expanded in terms of
small perturbations for the case of scalar pressure and adiabatic compres-
sion, and used to study nonlinear three-wave interactions in a homogeneous
magnetoplasma, The averaged Lagrangien method was applied to obtain the
éoupled mode equations. These were extended to include phenomenologically
the effects of wave damping. Solutions of the coupled mode equations were
given describing the spatial variations of the signal and idler waves
under the assumption of a strong but damped pump wave,

In Section 5,these solutions were specialized to experimental
conditions involving parametric excitation of ion-acoustic waves by
other ion-acoustic waves, by electron plasma waves, and by whistlers,
Quantitative comparison with available experimental data demonstrated good
agreement for situations in which the propagation characteristies of the
uncoupled waves could be measured accurately. Suggestions were given in
Section 5.0 for improved theory and experiments to reduce the most
significant discrepancies between them.

Although lLagrangian techniques can be used to obtain complete solutions

to plasma wave problems, such solutions may not always be necessafy, For
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example, in determining the oscillation properties of a bounded plasma,
the variational properties of the action integral can be used to obtain
the resonance frequencies, using only approximate trial functions for

the electromagnetic fields and plasma dynamics, We have treated one such
problem in Appendix B, The quadratic Lagrangian obtained in Section &

was specialized fo the problem of eleétrostatic resonances in an inhomo-
.gEeneous plasma column. The Rayleigh-Rit; procedure was applied directly
to the Lagrangian. For a low pressure positive column, it was found

that accurate frequencies and eigenfunctions could be obtained efficiently
for the first few resonances,. provided that appropriate coordinate functions
were defined. In contrast to numerical solutions to this problem obtazined
by Parker, Nickel, and Gould (1964}, the variational approach was found

to be appiicabie.for the enfire rangerof fhe ratio tcolumn radius/electron
Debye length) without incurring serious numerical instability in the
calculation of the first few resonance frequencies,

Some extensions to the work described in this thesis have already
been discussed in the individual sections. Among, and in addition to,
these are the following:

First, the general mathematical approach of the inverse problem of
fhe calculus of variations was found to be less effective in practice than
the more intuiti#e approach by energy considerations used in Section 3.
One of the reasons for this is that the mathematical approach lacks an
independent Qefinition of the dynamic variables that represent the degrees
of freedom 'in the corresponding physical problem., It would be of interest
to consider a problem in which the dependent (generalized) variables are
defined by the physical degrees of freedom before employing {he general
results of the inverse problem. We have not treated the question of
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Subsidiary constraints. When these are imposed,;the results of Section 2
must be modified to include them,

Second, one of the long-standing difficulties associated with varia-
tional principles is that of including energy dissipation effects in a
physical system (see for example, Goldstein, 1959}, We have only
partially succeeded in eliminating this drawback: in Section 2, because
of the difficulties associated with solving first order, nonlinear partial
differential equations, the examples on dissipative systems were limited
to linear equations; in Section 3y by cloging the system of energy transfer
in the macroscopic plasma, the effects of viscosity, heat conduction, and
elastic collisions, were included in the Lagrangian. These effects had
to be discarded in Section H.E, however, because of difficulties involved
in obtaining the corresponding perturbation approximations. The phencme-
nological approach used in Section 4. 4.2 includes the wave damping effects
in the coupled mode equations, rather than the Lagrangian leading to them.
It would be of interest to see if dissipation effects could be included
in the Rayleigh-Ritz procedure used in Appendix B, A possible procedqre
has been suggested by Mikhlin (1964),

Third, the results of Section 4.3 were written completely in terms
of quantities representing the linear wave properties: the polarization
vector e, the plasma polarization constant E?, the frequency Q, and
the wavenumber K. In the case of nonlinear wave-wave interactions, the
averaged Lagrangian method is equivalent to expressing the approximate
Lagrangians in terms of the linear eigenfunctions, e exp[i(QT-Ei'Ej],
of the homogeneous plasma, The Manley-Rowe relations, and the synchroniszm
conditions, can then be viewed as results of the orthogonalify property

of these eigenfunctions. Extensions of the averaged Lagrangian method
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to inhomogeneous plasmas should then be straightforward: we would start
with the general energy conservation theorem derivable from the approximate
Lagrangians obtained in Section 4. A formal substitution of the eigen-
functions, in place of the dynamic variables, could then be made., The
orthogonality property of the eigenfunctions should lead to selection
rules for the appropriate eigenvectors, and a power balance relationship
between the interacting linear modes. In those cases where the exact
eigenfunctions are difficult to obtain, the approximate eigenfunctions

could be obtained by the Rayleigh~Ritz method used in Appendix B,
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APPENDIX A: SOLUTION OF ULTRAHYPERBOLIC EQUATIONS
. To obtain the solution of the homogeneous part of (2.26),

2 2

a‘g +ag =0 3 (A.l)
v, et

when o £ p and 1 £ j, we first convert it to ultrahyperbolic form

Koshlyakov, Smirnov, and Gliner, 196h4),
) y E) E ’

2 2 2 2
¥ 7,87 _ 33_237_
st 2T e 50 (4.2)
%) s, 3y 3
by the substitutions,
o B - _ B _ _
Ui = sl+t1 s U = 5y tl » U? = 52+t2 s UB = 52 t2 3
ax B
Q(UiJ Uj; U?: U(f) = 9(51’ 52: t]_: t2) . (A.3)
Equation (A.2) is similar to the wave equation in a homogeneous two-
dimensional medium, but with two-dimensional time coordinates. Its
general solution can readily be obtained by separation of variables.
Assuming
7= vy(sy) volsy) wy(ty) w2(t2) (a.4)

leads to the system of ordinary differential equations,
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d-v d7v dw
1 2 1
- 5 = avy 3 - 5 = 8.V, ’ ” 5 = blwl R
1 ®2 1
d2w2
= — 24
5 = b2w2 , a, + a, = bl + b2 s {(A.5
th

where a bl’ and b are constants, The explicit solutions of

17 8o 2

v,, etc. are sinuscidal functions. Because no boundary conditions or

initial values restrict the solution for @, the general solution of

(A.2) takes the form,

g = |da,da_db, C(al,ag,bl)vl(al)ve(ae)wl(bl)wE(a1+32—bl) s (A.6)

where the weighting function, C(al’ag’bl)’ will be restricted by the

sufficient conditions of {2,31), {2.32), and (2.34).
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VARIATIONAL CALCULATIONS FOR RESONANCE OSCILLATIONS
OF INHOMOGENEOUS PLASMAS

by
Y-K, M. Peng and F, W. Crawford
Institute for Plasma Research
Stanford Univeréity

Stanford, California 94305

ABSTRACT

In this paper, the electrostatic resonance broperties of an inhomo-
geneous plasma column are treated by application of the Rayleigh-Ritz
method. In contrast to Parker, Nickel, and Gould (1964), who carried
out an exact cémputatibn,'we”have'used & description of the rf eguation
of motion and pressure term that allows us to express the system of
equations in Euler-Lagrange form. The Rayleigh-Ritz procedure is then
applied to the corresponding Lagrangian to obtain approximate resonance
frequencies and eigenfunctions, An appropriate set of trial coordinate
functions is defined, which leads to frequgncy and eigenfunction esti-

mates in excellent agreement with the work of Parker, et al. (1964),



1. INTRODUCTION

This paper is concerned with the use of the Rayleigh-Ritz procedure
to estimate the electron resonance frequencies of a warm inhomogeneous _
plasma column. This procedure has been extensively applied to singie self- -
ad joint equations with great success (Mikhlin, 1964). For a system of
equations, however, theoretical extensions have been noted only for the
case of ellipticlequationé {(Mikhlin, 1965). For the equatioﬁs to be
used here, which are not elliptieg, it will be shown that accurate resonance
frequencies can bhe predicted,provided that a certain set of coocrdinate
functions is defined.

Previous theoretical treatments of the electron resonance prohlem

give predictions which agree well with experimental data, ‘However, these
approaches have encountered difficulties stemming from the inhomogeneous
electron density profile. For example, Parker, Nickel, and Gould {1954)
solved numerically an appropriate fourth—order.differential eguation for
the rf potential in a cylindrical positive column, Because of the exponential
nature of the solutions in the cutoff region, their calculations wefe
limited by the condition, az/;E < 4500, where a is the column

radius} As (= EOKT/EBeg) is the mean-squared Debye length, and E;'
is the mean electron density in the column, Baldwin (1969) used a

" kinetic model in the low-temperature approximation to obtain the external
admittance of a cylindrical plasma capacitoxr. The appropriate differential
equation was solved after using inner-outer expansions connected through
the resonance region, A WEB description was used for the inner region,
where resonant waves are essentially evanescent, while a travelling wave

description was used for the outer region, where Landau damping is important,

Because the wave nature of the solutions was assumed in the outer region,



this theory is appropriate only for higher order resonances. Similar
difficulties have been shown to occur in the simpler one-dimensional model
(Harker, Kino, and Eitelbach, 1968; Miura and Barston, 1971; Peratt and
Kuehl, 1972).

Variational methods offer an attractive alternative to these treatments,
They have been used previously to estimate plasma resonance frequencies
with simplified trial functions. Resonances of a cold inhomogeneous plasma
were treated by Crawford and Kino (1963). Using the variationa}l principle
established by Sturrock {1958), Barston (1963) approximated the dispersion
relations for wave propagation along an infinite cold plasma slab, and
along the interface between two semi-infinite, counter-streaming cold
plasmas. Some general features of the guided waves on a cold, transversely
inhomogeneous plasma column in an axial magnetic field were studied by
Briggs and Paik (1968), ‘These papers (Crawford and Kino, 1963; Barston,
1963; Briggs and Paik, 1968) show that, with appropriate variational
pPrinciples and judiciocus choices of trial functions, useful results can
be obtained with relative ease by the variational approach,

A theoretical variational formulation for the electrostatic resonance
oscillations of a warm, inhomogeneous plasma column in a dc electric or
magnetic field of arbitrary direction was presented by Barston (1965)
with the adiabatic index, ¥ , taken as unity, The variational prin-
ciple to be presented here, however, is not restricted in the values of
¥ - One important feature in Barston's (1965) analysis is that the
rf electric potential was treated as the solution of the rf Poisson
equation, with the rf electron density considered given, It will be
seen that the coordinate functions to be used here are defined in a

similar fashion. A variational method of the Rayleigh-~Ritz type has



been applied successfully by Dorman {(1969) to a one-dimensional, warm,
and field-free plasma with arbitrary dc density profile. A single
second order differential equation for the electric field was obtained,
and shown to have hermitian operators, The variational principle to
be used here differs from Dorman's (1969) in that we are dealing
directly with a system of Euler-Lagrange equations, In so doing, we
can keep downrthe order of the equations, and are able to consider
warm inhomcgeneous plasmas in more than one dimension,

In this paper, we shall show that by appropriate definitions of the
rf equation of motion and pressure term, the equations of the hydrodynamic
model used by Parker, et al. (1964) become Euler-Lagrange equations, fhis
will enable us fo demonstrate the effectiveness of the Rayleigh-Ritz
procedure in estimating thé resonance frequencies of an inhomogeneous plasma,
The associated numerica} method méinly involves evaluations of definite
integrals and solutions of finite algebraic eigenvalue equations, and is
applicable over the entire range of az/zg >> 1 for estimating the first
few resonance frequencies,

In most of the papers that deal with the electrostatic resonance
problem (Crawford and Kino, 1963; Parker et al., 1964; Harker et al., 1968;
Baldwin, 1969; Dorman, 1969; Miura and Barston, 1971; Peratt and Kuehl,
1972), it is assumed that the rf plasma current normal to the glass wall
is zero, However, in the low temperature limit, a2/;E - ® , the main
resonance frequency seems.to agree with that of cold plasma theory,in which
the normal rf plasma current is retained. We consider this problem and
show that the resulting difference in predicted resonance frequencies is

negligibly small for low pressure positive columns,



In §2, we present the basic equations, the corresponding Lagrangian,-
and the procedure to be applied in the variational approach., In §3, the
numerical methods are explained before comparing computations with those
of Parker e_t g_l. (1964). The paper concludes with a brief discussion

in §4.



2. THEORY .

For a low pressure positive column, moment equations with scalar
Pressure and negligible heat conduction are appropriate when the wave
phase velocity is much larger than the thermal speed. For the first few
electrostatic resonances, the wave pﬁase velocity may bhe scaled to wpa ,
lwhere wp[:(eznO(O)/meo)l/zj is the axial plasma frequency. Thus we require
az/zg >> 1. A stationary ion background will be assumed, since we are
interested only in electron resonances. Dissipation due to collisions,
and Landau damping, will be neglected. Our analysis will consequently be
valid only for the first few resonances, Also, the analysis will be quasi-
static. Apart from some differences_in definition éf the rf equation
of motion and pressure term, the equations we shall use are essentially

those used by Parker, et al, (1964). The equations are generalized here

to include dc magnetic field, B_ , and electron drift velocity, v
We have,
L L (n#) 0 E e{n-n_) 0
at * ! =0 €Vt I’ T
v ) P (E B) = 0 t 1 ‘ 1
iy . e = .
ma =T+ VY + @ "‘.“n,*.,‘f.",,,) atro + ¢ (1)

Specialized to small perturbations, these reduce to the dc equations,

v-agyy) =0, €V Eg + e (nymp) =0,
(2)
mn v -VXO+VP0+ enO(EO+XOX§0) =0 (at ro) s
and rf equations,
an,
3t VY f Yy =0, evE; +en =0,
Tnog + (ﬁgi)vpo + WP+ S-V(VPD)
“gE : : : - 3
+en  (§'VE, + B/ + §E xBy+ v X B)) =0 (3)



where é = dg/dt = Qﬁ/dt + Xo-qs . In these equations, m and -e are
the electron mass and charge; n and P are the electron density and
pressure; E‘ is the electric field; nI is the ion density; GO is the
vacuum permittivity; and E is the perturbation displacement for the
electrons (Figure 1).

The magnitude of :0 is relatively small in the plasma region, but
increases in the sheath region from the ion-acoustic speed to roughly the
electron thermal speed at the glass wall (Self, 1963; Parker, 1963). We
shall consequently neglect it in our analysis, However, due to the presence
of non-zero io, LY and an rf electric field at the wall, a non-zero rf
normal current term arises, and hence an rf surface charge term., The
inclusion of this surface charge term; in the cases where the electron
rf excursion exceeds the Debye length, is equivalent to the use of the
dielectric model for a cold plasma column (Crawford, 1965). Further
discussion of this surface charge term will be given in §3.4. With Yo

neglected, the following relations become appropriate
ny{r) = n (0X(r) , f(x) = exp[-ep (r)/xT_] ,
(4)
n, = —v-(nog_) , v, = BE/B‘C ,
where k is the Boltzmann constant, wo(r) is the dc column potential,
Ey(x) = ~wp (1) , (5)

and the first equation of (3) has been used to obtain nl. The rf

electron pressure, P1 , 18 determined by the adiabatic equation of state,

PEGEI sy = mgr ) /mg ) ) By = mpe (6

The form of (6) can be understood by reference to Figure 1, and

follows from the fact that when a cell is displaced from 30 to r + &,
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FIG. 1. Definition of plasma perturbation.



.

P is defined for the given cell rather than for the given position, 30
The adiabatic equation of state must consequently be applied te the same
cell, before and after the displacement. Using the usual definition of

perturbations,
P(r) = Po(f_J + P (1), n(r) = no(g) + nl(}_:) ' {7)
and (4), we obtain
Pl = —‘yPOV-E- E'vpo . (8)
The rf force law in (3) is obtained by comparing the force laws in (1)
and (2) in the same fashion (Newcomb, 1962).

It is now straightforward to use (4), (5), and (8) to rewrite (3)

in terms of only E and the rf potential, @1(—931 = El)’

Y3 . - P “ _ . _ P .
™ot = O-LvRveg - vEoP, - 9P v(vE)
- eno(mwl + 5;VV@0 - EXEO) =0,
z ey-(n £) = 0 (9)
€V Py *+ ¥ Oi = .
Equations in (9) can be Fourier-transformed, normalized, and expressed
in a ¢ylindrical coordinate system, (r,0), for a column of cylindrical

symmetry,
2 2 1 £ 1
o"1e, - 001ty + g [ 1l 0 & c) + gy ¢

2 P SR A " 'y 10
Ay oyl + g 0 - F O ¢ 1@ 487 ) = 0, (10)

2 2., 1 2 r 1 4
2 1q = QNIL, + ApT" FUL,Cg) + Ap oF %(Er *RG TR ‘ée)

r

1 _y £ _ | 11
+f(—R@Oge+R¢l)_0. (1)



rt L2 £
: .
(R@l) - Ef @1 + (ngr) - R f EB =40, (12)

where the derivative with respect to R is denoted by (’) and

3 ,(0) = =1, ¢+ 1,40

¢ (R, 9, T) —Z f dﬂ@ (R)exp iQT+40) , (13)

£ ==en

with 1 denoting unit vectors. The normalized quantities are defined as

R =1r/a, T = t O =
/ W, e w/wp ,
QC = eB /“w 3 ..CL = g/a '
Az = 7\2/3 = ¢ kT _/n_(0)e“a 3 = /n (0)ea? (14)
D "D - E. e ? = Qeq/ '
and a static axial magnetic field, B0 , has been included.

2.1 Lagrangian Density

The forms of the force law in (3),and the rf pressure in (7) ,
represent the important differences from the paper by Parker, EE El° (1964)
in that they make (9),as well as (10)-(12), systems of Euler-Lagrange

. equations without having to restrict the values of +y (Barston, 1963).

In one of the models used by Dorman (1969), an appropriate pressure term
similar to (7) was used without- the benefit of the rf force law in {3).
As a result, he was able to establish the variational principle only for
the one-dimensional case,

The Lagrangian corresponding to (10)-(12) can be shown to be the

fellowing, by straightforward application of Hamilton's variational principle,

10



=]
[--]
L, = E /dmz(ﬂ,{,) , £2(Q,{,) = QZA - OB+ H ,
c
0

=

1 1

A =f fRAR (lgrlz ’Eglz) ’ B =f fRdR (grgg + g;go) ,
0

+
0
2 ? /
H = —AD(7T+T )y - VOS - I+F+F" < 0 |
1
, 1 1, 2 1 ’ _ W !
T =/ fRdR|gr + 50~ 7 Col * 2 [ECRCC) ¢ - 20,) c.c.leq
o
1
T/ = £RAR |2 CIRCx-1%) + e Cafll® - %) + c.c
- R =r*“~@ =r E Co'tlr ~ G e
0
1
M LR TS RS N
1
" 2 1 2
s =/ £RAR (¢O|gr| + g eilel ) ,
0
1 1
L | 2 12 2
I=-f fRaR (gr@l’* +F (g8t + C.c.) , F= | RdR (I:@l’] + 55 e
0 0 R
R, R
2 2
2 2 2 2
F’ =/engR ([@1’[ + % |2, | )+/ RAR (|@1’| + % 8, | ) ,
0 R R R
b
b
Rb=E' RC=§ ' (15}
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where c¢.c. denotes complex conjugate. Equation (15) is appropriate
10 the configuration shown in Figure 2 of a concentric metal cylinder

surrounding & glass tube, of relative permittivity ¢ that contains

¥

the boundary

b

the plasma column, In the eipress%ons for T and T/
terms are included to modify the natural boundary conditions on C

" and ge (see for example, Coﬁrant and Hilbert, 1953) that would other-
with be unphysical. In the éxpressions for H and 8§ , ¢O(r) and V

0

are defined as

B, (F) = - éo(r)/vO y Vg = - g,

Substitution of the exact solutions of (10)-(12) would make £2(Q,L)
zero., We see from (15) that, for negligible Qc , AD , and VO , the
resonance frequencies are determined essentially by the values of I, F,
and F/ . BSince Vo is approximately proportional to AD (Self, 1963;
Parker, 1963), the effeét of higher electron temperaturé is to raise each

resonance Ifreguency. When Qc # 0 , the roots of SZ(Q,L) = 0 are

Q, 5 = a.8/24 £ [@B/20)" - m/ar/? (16)

Since ()} and - (1 are indistinguishable in experimental observations, we
.see that all the resonance frequencies are predicted by (16) to split
in two,in agreemeat with the theoretical results of Barston (1965), and

Vandenplas and Messiaen (1965). For sufficiently small () when the
. C

¥
values of B and A are not greatly affected by the presence of an
axial static magnetic field, the amount of- the split, IQCB/A| , will
be proportional to Dc. This is in agreement with the observed splitting

character of the main dipole resonance frequencies (Crawford, Kino, and
-
Cannara, 1963; Messiaen and Vandenplas, 18962). Furthermore, since

A= lBl, where the equal sign applies when gy = ge , this split is predicted

to be always less than or equal to
c

12
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2.2 Rayleigh-Ritz Procedure and Coordinate Functions

For a single linear Euler-Lagrangian equation, the Rayleigh-Ritz
procedure is efficient in obtaining an approximate solution,by use of a
weighted summation of a set of judiciously chosen coordinate functions,
These coordinate functions must be linearly independent and complete,
and satisfy the boupdary conditions specified by the problem., The
weighting coefficients that appear in the approximated Lagrangian are
varied independently. This results in a system of algebraic equations
that take the place of the original equation. Theoretically, better
approximations can be obtained by using more coordinate functions, When
eigenvalues are involved, the approximate eigenvalues always converge to
the exact values from above (see for example, Mikhlin, 1964),

Muech less attention has been given to the analogous problem for a
‘system of linear Euler;Lagrangian equations, e.g. (10)-(12), though the
theoretical extension of the variational method to a system of second order
elliptic equations has been mentioned by Mikhlin (1965): the way to set
up the corresponding coordinate functions is‘similar to that for the single
equation case, i,e. the coefficients of each dependent variable are varied
independently.

For our problem, in which (10)- (12) are not in elliptic form, the
coordinate functions and the coefficients must be more'restrictéd. In the
Appendix to the paper it is shown that acceptable estimatestof resonance
frequencies and eigenfunctions can be obtained for our problem provided
that the coordinate functions chosen for each dependent variable are
related by (10)-(12),

By expanding Cr' ge , and @l in power series of R, ;nd substituting

in (10)-(12), we see that for small R , gr oc CQ o RL-l , and @l o £

14



Thus, for 4 = 1 , the solutions are well behaved at R =0 . If we
alsc choose even functions for f(R) and QO(R) , then gr and Qg are

even in R , and @1 is odd in R , when { 1is odd, and vice versa.

Since there are no other singularities in (10)-(12), polynomials in R
constitute appropriate coordinate functions for our problem. For conveunience,
the coordinate functions chosen for gr will be

4-1 _ d+2j-1 g

= R =1,2,...) , Qa7

grj
which conform to the usual assumption of zero normal rf current, since
grj(l) =0
Rather than choosing Cej and @1 j indepeandently, we must determine
¥

them via the original differential equations and (17)., After eliminating

& in (10) and (11), it follows by using the second equation of (4) that

1
2
RQ (Rgé g - A0 = RAOQ+ 2O-LE TR+ ¢ ~L0) - (18)

With a given expression for Qo(r) , and an assigned value of {) , e.g.

=1, gej can then be easily determined for any given er
An immediate guestion arises councerning the dependence of the resulting

variational estimate of resonance freguencies on the size of () chosen

arbitrarily here, We have found that the first few resonance frequencies

do not change by more than 1()-4 wp when (& in (18) changes from 0,4 to 1

for all the values of 1/Ag used in this paper. If this were not the

case, an iterative procedure would have to be used, i.e, the resulting

variational estimate of ([ would have to be used in (18) to obtain a

new set of QBJ . These would be used in turn to obtain improved frequency

estimates, and s0 on.
The corresponding coordinate function, @1 .+ 18 obtained by solving
s d

(12) (Barston, 1965),with conditions of continuity of potential and normal

displacement across the boundaries defined in Figure 2. According to the

15



discussion given in the Appendix, identical coefficients are assigned to

" each set of coordinate functions,

N N
- - - 19
b Z 25Ce o %o Zajgej ’ L1 Zaj‘bl,j > A9
. j=1

before substitution in the Lagrangian, £2(Q,L), of (15). The resulting

Lagrangian then gives the algebraic Euler-Lagrange equation below,

N ‘

2 : .
z;(QAji-—Qﬁchi+HJi)aj—D (1 =1,2,..., N),
j=

1
Aij = fRdR(grier + QeiCej) , . . (20)
0

whéré——Aij , B;é , and’’ Hij “a¥e the matrix elements of the integrals, A,
B, and H, given in (15), respectively, and are obtained by substituting
the coordinate functions in a fashion given by the above Ai' expression,

Equation (20) can be transformed into a generalized eigenvalue problem

(Dorman, 1969)

2N
v - _
- = = 1,: N
‘: (QAij lj)b 0 (i y 2, . 2N) ,
v J=1

bj = (ai,Qai) . (i =1,2,..., 2N, i=1,2, , Ny,

_ -H 0 0 -H ‘

A = +) o B = , (21)

0 A at a8
R 4

with superscript + signifying the transposition of a matrix. Equation (21)

is now solvable by standard computer codes,

16



3. NUMERICAL METHODS AND RESULTS

The computing'pfocedure is straightforward:
(i) read in physical and computational parameters,
(ii) compute coordinate functions er ’ @i i and all other functions
k)

appearing in the Lagrangian, EZ(Q,E), at intervals Ar ,

(iii}) compute 22 (2,1) by Simpson's rule to obtain Aij , Bij ,» and
H.. , and
1]
(iv) solve (21) for & and aj ,and compute relevant eigenfunctions for

N, N~1, and N-2 coordinate functions.

3.1. Approximate DC Density Profile

A density profile which approximates Parker's results (Parker,
1963), and is convenient for both analytical and numerical manipulation,

is given by
(R = eml- N0,  9(® = pr” + 1-p)E", (22

where h(> 2) is an even integer, g < 1 , and T [= VO/As} is the wall
w

value of the potential function, T(r) , used by Self (1963) and Parker

(1963). The particular form of {22) is used to Jjustify the choice of

coordinate functions of (17). Furthermore, with the use of (22), gej

and § can now be solved analytically in terms of power series in R,

1,3

in addition to the numerical solutions of (12) and (18). Comparison of
the scoluticns by the two methods will provide an estimate of the degree

of accuracy achieved inh obtaining Cej and @l )
+J

The values of g and h are varied until f(r) best approximates,
by least-square deviation, the profile given by Parker for specified values

of A and Ny - The resulting profiles are shown in Figure 3, and the

D
corresponding values of 8 and h are given in Table 1. It will be

2
seen that as l/AD increases in value, (22) decreases in accuracy because

17
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FIG. 3. Comparison between (22) (indicated by dots), and Parker's

4
density profile, for the parameters given in Table 1,



Table 1

Parameters used in (22}, and Figure 3, for a mercury-vapor

s [;

positive column, The conversion between 1/A; and lA;

is obtained by the calculations of Parker (1963).

2 2 *_ 2 2
/Ay /A, M, B h o "ZA%, + EA"R
2 1 * -4
a 3.4 x10° 7.2x10 6.72 0.447 4 6.2 x 10
3 2 *. -4
b 1.3 x 10° 5.1 x 10° 6.60 0,221 8 1.3 x 10

¢ 8.2 x 10° 4.5 x 10° 6.52 0.159 20 t6.2 x 1073

4 4

d 6.7 x 10 4.3 x 10 6.44 0.142 54 42,9 x 10°°

5 -
e 6.2 x 10 4.2 x 10°  6.40 0.141 156 $7.5 x 10 °

-4
£ o w 1.08 0.644 12 +1.3 x 10

19




I3

of the increasing degree of steepness displayed by the density profile
in the sheath region, At zero temperature, the sheath is omitted and
an accurate approximation can again be obtained, The approximation of
{22), however, was found to be sufficient to give accurate frequency
and eigenfunction estimates for all of the values of i/As listed in

Table 1.



3.2. Solutions for er and @1 3

By the use of (14), (15), and (19), gej can be put in the

form of a rapidly comverging series,

oo
0-1 2424+ (i-1) (h-2) -1
Cgy = R - § :Th+l,i R s

J
i=1

, 0 Q
QU (A+29-2) -E—— - 28 (r-1)V,,
ETE R ’
T (423-2) + 9 0-28 (-1

| ) (y—l)(l-ﬁ)hVOELaj’l-(&+2j"2)]
T]j ,2 - QZ !
EE(&+23+h-4)+ocQ-2a(y—1)LVO

. 22(5~1) (1~ 8 v,
oy = .ol (i > 3). (23)
B 0% (h-2) ERS

Since the maximum value of VO of interest is roughly 0.02 and

2 1 , one needs at most five or six terms in (23) to attain a precision

-8
of 10 for ,
QGJ

To solve for @1 5 the predictor—corrector method of Adams-Bashforth
>
(Fox, 1962) has been used on (12), which can be reduced to the form,

!

2
4
Yl ®l,] 3 Y2 = Rcl)l,.] )
- _ ’ r _ 24
g(R) = £O-RN, € . + RO, + €0 = 2040 - 24
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Siqce the complementary solution of (24) is @N = yN = RL

1,4 1 '
2
R&+ J

and its
. : P .

particular solution, ¥y o is proportional to near r = 0 ,

P’ |

¥y {G) and yz(o) are both equal to zero, So the starting values of

P '

Yy and yg are well-behaved, and easily obtained by Taylor series

expansion near R = 0 ., The total solution of @1 can then be written

a8s

P N
5
+ @1,3 . (23)

where cj is determiﬁed by imposing the boundary conditions of @l
By making the interval Ar = 0.0l1, and using double precision, Qi,j
can be calculated to within 10_8. This is arrived at, first, by com-

paring results that use different values of Ar , and secondly, checking

against solutions of (12) obtaided by power-series expansions in R .

3.3 Numerical Instability

In the process of solving the algebraic equation, (21), the size
of N is limited by the inaccuracy involved in obtaining Aij , etc,
This inaccuracy introduces a numerical instability whenever the coordinate
functions are not orthogonal functions with respect to the differential
operators of (10)-{12) (Mikhlin, 1971, Chap. 2). The situation is bést
illusfrated by an example in which the dipole resonance frequencies
corresponding to Figure 3(b) are calculated for different values of N
while holding the size of Ar constant at 0,05,

As shown in Table 2, as N is increased from 2 , the first few
rescnance frequencies are approached from above with rapidly stabilized
estimateg. When N is increased beyond 8, undesirable fluctuations
larger than 10_4, and clearly erratic changes in the values of {2 , start

to appear. In the case N = 9, for example, one would ocbtain an erroneocus
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Table 2

Dipole resonance frequency estimates obtained with Ar = 0.05
for the case of Figure 3(b). Significant numerical insta-
bility sets in when N = 8 . The 'best estimates' are

obtained with Ar = 0.01 and N = 9 .

N Main First Second Third Fourth
Best estimates:| 0.4447 0.7099 0.8746 0.9924 1.080
2 0.4703 0.8813

3 0.4486  0.7446 0.9250

4 D.4450 0.7155 0.88138 1.022

5 0.4448 0.7119 0.8757 0.9958 1.084

6 | 0.4448 0.7117 0.8753 0.9956 1.084

7 0.4448 0.7104 0.8751 0.9947 1.082

8 —0j4;4; i 6.30;8‘ ) 6.%7;8_ i 6.;951"'F 1.681 i

23




fundamental resonance frequency. Characteristic of the variational
nature of the Lagrangian, gz(Q,L), more serious errors are found in

the approxiﬁate eigenfunctions, than in the resonance frequencies, The
optimal combination of N and AT , that produces acceptable results

in the shortest computation time, can be obtained by trial and error.
Repeated solution of (21) for a few adjacent values of N thus becomes
an economical technique; this requires computation of the matrices Ai,
etc. only once, and offers safeguards against obtaining erroneous results
due to numerical instabilities.

3.4 Computer Results

As a practical example, the approximate density profiles given

in Table 1 have been used to predict dipole resonances for Tube No, 1
used by Parker, et al, (1964) (£ = 1; a = 0,5 cm; effective relative
permittivity at the surface of the column K pp = @{/{@1 = 2,1). The
computation time varies roughly as N2 . With N = 10; a typical calcu-
lation takes about 40 seconds, and requires a core space of less than
100K bytes in an IBM 370/67 machine.

The resulting approximate solutions for 185 1y, ¢,, and @i
are plotted in Figures 4-6. The density and the radial electric field
solutions, nl{R) and‘¢{ resemble very closely those given by Parker, et al.
(1964), and Parbpakar and Gregory (1971), respectively. The relative
amplitudes of gr and Ee shown in these figures are retained, revealing
that as 1/;3 increases, gr progressively dominates over ge . For
1/;3 > 4500 , it will be seen that the perturbations should be progressively

compressed toward the sheath region as 1/A§ increases in value, These
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solutions are not reproduced here because they also exhibit undesirable

oscillations with wavenumber equal to N an expected characteristic

;
when we try to approximate rapidly varying functions with truncated
polyncmials., 8Since only a moderate computer storage is used for N < 10 ,
there is room to increase N, and decrease Ar, to obtain better approxi-
mate solutions. However, this is considered unimportant for our purpose,
since we are able to obtain good frequency estimates for this region with

N £ 10, as Figure 7 reveals,

The corresponding estimates of resonance frequencies are shown in
Figure 7, Since the electron temperature corresponding to the experimental
resonance data of Parker et al, (1964) was adjusted to fit their theoretical
spectrum, it would be reasonable for us to make a similar adjustment, As
is evident from Figure 7, however, no such adjustment is necessary. Indeed,
our result seems to be in slightly better agreement with the Te = 3 eV
data, The minor differences between the two theoretical results probably
come from the differences in the rf equation of motion and pressure
term used in the two treatments

Similar to other papers (Crawford, 1964: Parker et al., 1964; Harker
et al, 1968; Baldwin, 1969; Dorman, 1969; Miura and Barston, 1971; Peratt
and Kuehl, 1972), we have assumed zero normal rf plasma curreat density
at the glass wall, through the form of er in (17). This is appfopriatE‘
when the plasma is sufficiently warm that the electron excursion velocity
is much smaller than the thermal speed,and (1) <« 1 . This assumption,
however, is inconsistent with the dielectric model for a cold plasma
column, where normal rf plasma current must be included. It is of

interest to ask why the main resonance frequency of a warm plasma column,
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in the 1limit of low temperature, approaches the principal resonance of
a2 cold plasma column. To answer this question, we need only change (17)
to

£-1 . RL+2.]—l

::R (j:l,z,...)., (26)

{:rj
'and impose the requirement of continuity of normal displacement in the
form

810 + £ ) = ¢ g/ ") 7
The resulting solutions of Cr are found to be only slightly different
from the previous case near R = 1 [Figures 4-6, where the dashed lines
correspond to the use of (17)]. Furthermore, the main resongnce is
lowered by less than 1 per cent for all of the values of 1/;3 used
here, including_jhe“case l/zﬁ_ﬁ,m . This is well within the experi-

mental errors.
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4, D;SCUSSION

In this paper, we have applied the Rayleigh-Ritz procedure to a system
of three Euler-Lagrangian equations that describe the electron resonances
of a nonuniform warm plasma column., It is shown that accurate frequencies
for the first few resonances can be obtained for the entire range of

1/Ag >> 1 , Results which agree closely with those of Parker, et al,
(1964) have been obtained

Contrary to the case of a system of elliptic equations, where the
coefiicients are assigned independently to each dependent variable
(Mikhlin, 1971), we have found that for (10)-(12), the same coefficient
must be assigned to each set of coordinate functions, e.g. (19), In
addition to the usual requirements, that the coordinate functions must be
linearly independent and complete, we have chosen that they be set up in
accordance with (10)-(12),

The present method can be easily modified to include the effects
of electron dc drift, dc magnetic field, and ion motion. With.the axial

dimensions and rf magnetic field included, this procedure would be efficient

in solving travelling wave problems in a nonuniform plasma waveguide.
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APPEND IX
Here we shall show that the coordinate functions, grj s gej , and

@l i must be assigned the same coefficients, aj‘, for the Rayleigh-

Ritz procedure applied to Sz(Q,L) of (15) to be successful: it will
be shown that, by restricting these coordinate functions according to
(10)-(12), the appropriate Rayleigh-Ritz procedure can be established,

A system of second order elliptic equations can be written as

(DjU +J\EjU=0,D.=D., E,, = E (A.1)

I)f
k k k ik T Tk ik Pkj ®

th
where Uk is the k dependent variable, the matrices Djk and Ejk
are functions of the independent variable x , the eigenvalue is 3} (z 0),

and the summation convention has been used. Ellipticity demands that
0 = 0 (A2

Djkajak > , Ejkajak = ) ( )

for any real non-zero vector oﬁ . The solutions of (A,1) then admit

of variational estimates, as outlined by Mikhlin {1965},

When we apply the Rayleigh-Ritz procedure to the Lagrangian for (A.l),

1

! ’
- -3 A.3
L /dx (DijjUk )\EijjUk) , ( )
0

the coefficients preceding the coordinate function for each Uk can be
varied independently, Suppose a set of legitimate trial functions,

Uk = Ckvk (summétion convention not used here) with coefficient Ck , are

»

used in (A.3)}. Because of (A.2) we can obtain crude estimates qf X

larger than the lowest eigenvalue, even if only one of the Ck is non-zero.
If the same procedure is applied to the Lagrangian in (15), we will

obtain erroneous estimates of (3 . Consider the case of a coid, uniform

plasma column with B, =10, so that H=-I+F+ F’ . Suppose C ,
r
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2

C9 , and C are the coefficients for the coordinate functions Cr

. spectively. hen if € = 0, the value of the
Cre , and Qi,J , respectively Then i " 0
estimate will be zero, and lail the requirement of the Rayleigh-Ritz
sequence.
1/2

Consequently, to make (-H/A) from (15) at least non-zero, we

must use a single coefficient for each set of the coordinate functions
i = = = a is insuffi-

and él,j . Merely making Cr Ce C¢ i is in i

cient to produce a legitimate Rayleigh-Ritz sequence, because the value

Ces > Goj

of @1 j for example, can be arbitrarily small in compariscon with

3
er and gej , making the [ estimates also arbiirarily small. We
see that restricting these coordinate functions according to (10)-(12),
is sufficient to rgduce the resulting approximated Lagrangian to a single
Euler-Lagrange equation. The appropriateness of the resulting Rayleigh-
Ritz procedure can then be guaranteed. It is conceivable, of course,
that there'may be less restrictive choices of appropriate coordinate

fungtions corresponding to the Lagrangian in (15), but we have not chosen

to pursue this point,

36



